留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

危险废物渗滤液阳离子和应力作用下膨润土化学相容性研究

杨延梅 梁柱 姚光远 刘玉强 徐亚 刘景财 钱璨

杨延梅,梁柱,姚光远,等.危险废物渗滤液阳离子和应力作用下膨润土化学相容性研究[J].环境工程技术学报,2024,14(4):1337-1345 doi: 10.12153/j.issn.1674-991X.20230842
引用本文: 杨延梅,梁柱,姚光远,等.危险废物渗滤液阳离子和应力作用下膨润土化学相容性研究[J].环境工程技术学报,2024,14(4):1337-1345 doi: 10.12153/j.issn.1674-991X.20230842
YANG Y M,LIANG Z,YAO G Y,et al.Study on chemical compatibility of bentonite under the action of cation and stress of hazardous waste leachate[J].Journal of Environmental Engineering Technology,2024,14(4):1337-1345 doi: 10.12153/j.issn.1674-991X.20230842
Citation: YANG Y M,LIANG Z,YAO G Y,et al.Study on chemical compatibility of bentonite under the action of cation and stress of hazardous waste leachate[J].Journal of Environmental Engineering Technology,2024,14(4):1337-1345 doi: 10.12153/j.issn.1674-991X.20230842

危险废物渗滤液阳离子和应力作用下膨润土化学相容性研究

doi: 10.12153/j.issn.1674-991X.20230842
基金项目: 中央级公益性科研院所基本科研业务费专项(2022YSKY-31)
详细信息
    作者简介:

    杨延梅(1975—),女,教授,博士,主要从事固体废物处理与处置研究,cqyymei@163.com

    通讯作者:

    姚光远(1990—),男,副研究员,博士,主要从事固体废物的资源化利用、填埋处置及环境风险控制研究,yaogy@craes.org.cn

  • 中图分类号: X705

Study on chemical compatibility of bentonite under the action of cation and stress of hazardous waste leachate

  • 摘要:

    膨润土因其优异的防渗性能被用于危险废物填埋场防渗屏障的构筑,但其防渗性能通常会受到渗滤液和应力的影响。通过渗滤液采样分析设置不同浓度阳离子溶液,系统探究实际渗滤液组分对膨润土防渗性能的影响规律;选用Ca2+作为特征阳离子研究不同应力条件下膨润土渗透系数变化规律;同时结合Zeta电位和DLVO理论计算,阐明渗滤液组分和应力作用对膨润土化学相容性影响规律。结果表明,渗滤液中Al3+、Fe3+、Zn2+、Ni2+、Cu2+、Fe2+、Mn2+浓度为0~0.20 mmol/L时,对膨润土膨胀特性和渗透特性影响较小。Mg2+、Ca2+、K+、Na+浓度为0.20~50 mmol/L时,Ca2+对膨润土膨胀特性和渗透特性影响较大,Ca2+浓度由1 mmol/L上升到50 mmol/L时,渗透系数由1.15×10−7 cm/s急速上升到6.34×10−6 cm/s。Ca2+浓度和应力通常通过影响水化后膨润土孔隙比进而影响其渗透特性,相同Ca2+浓度条件下,渗透系数随应力增加而逐渐降低。Zeta电位和DLVO理论分析表明,Ca2+浓度增大会导致膨润土表面负电势减弱,引起膨润土双电层厚度减小,使膨润土中蒙脱石的层间距变小,导致膨润土膨胀特性和渗透特性降低。因此,填埋过程中应优化危险废物固化稳定化工艺,从源头减少渗滤液中Ca2+浓度;同时还应研发新型膨润土复合材料,提高膨润土在Ca2+等高浓度盐溶液中的防渗性能,防控危险废物填埋场渗漏风险。

     

  • 图  1  低浓度阳离子(Al3+、Fe3+、Zn2+、Ni2+、Cu2+、Fe2+、Mn2+)对膨润土膨胀性能影响

    Figure  1.  Effect of low concentrations of cations (Al3+, Fe3+, Zn2+, Ni2+, Cu2+, Fe2+, Mn2+) on the swelling properties of bentonite

    图  2  高浓度阳离子(Mg2+、Ca2+、K+、Na+)对膨润土膨胀性能影响

    Figure  2.  Effect of high concentrations of cations (Mg2+, Ca2+, K+, Na+) on the swelling properties of bentonite

    图  3  不同阳离子浓度下渗透系数变化

    Figure  3.  Changes in permeability coefficients for different cation concentrations

    图  4  Ca2+浓度为1 mmol/L时P0t/V-V关系曲线

    Figure  4.  P0t/V-V relationship curve for Ca2+ concentration of 1 mmol/L

    图  5  不同Ca2+浓度下应力与φ关系曲线

    Figure  5.  Experimental pressure versus φ curve for different Ca2+ concentrations

    图  6  不同Ca2+浓度下应力与平均孔隙比的关系曲线

    Figure  6.  Pressure versus average pore ratio relationship curve at different Ca2+ concentrations

    图  7  不同Ca2+浓度下平均孔隙比与渗透系数的关系曲线

    Figure  7.  Relationship between average pore ratio and permeability coefficient at different Ca2+ concentrations

    图  8  不同Ca2+浓度下渗透系数的变化

    Figure  8.  Variation of permeability coefficient at different Ca2+concentrations

    图  9  不同浓度阳离子中膨润土胶体间势能作用

    注:图(c)离子浓度均为0.05 mmol/L,图(d)离子浓度均为0.20 mmol/L。

    Figure  9.  Diagram of intercolloidal potential energy action of bentonite in different concentrations of cations

    表  1  膨润土物理化学指标

    Table  1.   Physical and chemical indexes of bentonite

    蒙脱石
    含量/%
    胶质价/
    (mL/g)
    液限/%塑限/%比表面积/
    (m2/g)
    膨胀容/
    (mL/g)
    756.68269.43425219.8
    下载: 导出CSV

    表  2  不同阳离子溶液作用下膨润土Zeta电位

    Table  2.   Bentonite zeta potential under the action of different cationic solutions mV 

    离子浓度/(mmol/L) Na+ K+ Ca2+ Ni2+ Cu2+ Zn2+ Fe2+ Fe3+ Al3+
    0.05 −33.37 −33.87 −34.60 −32.13 −37.83 −34.77
    0.20 −32.90 −24.23 −34.60 −32.53 −32.43 −30.30
    5 −36.63
    10 −36.33 −10.95
    50 −42.53 −38.20 −8.83
      注:—表示未检测。
    下载: 导出CSV
  • [1] 生态环境部. 2020年中国生态环境统计年报[A/OL]. [2023-12-06]. https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202202/W020220218339925977248.pdf.
    [2] 陆晨遨, 曹郁, 夏宇欣, 等. 呼伦贝尔市城郊河岸带土壤与河流沉积物重金属污染现状分析[J]. 地球环境学报,2023,14(1):110-120.

    LU C A, CAO Y, XIA Y X, et al. Analysis on the current heavy metal pollution situation in the riparian zone and river in the suburbs and urbans of Hulun Buir[J]. Journal of Earth Environment,2023,14(1):110-120.
    [3] 吕玉娟, 王秋月, 孙雪梅, 等. 浙江省某尾矿库周边农田土壤重金属污染特征及来源解析[J]. 环境工程技术学报,2023,13(4):1464-1475. doi: 10.12153/j.issn.1674-991X.20221193

    LÜ Y J, WANG Q Y, SUN X M, et al. Pollution characteristics and source identification of heavy metals in farmland soils around a tailing pond in Zhejiang Province[J]. Journal of Environmental Engineering Technology,2023,13(4):1464-1475. doi: 10.12153/j.issn.1674-991X.20221193
    [4] 程睿. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2020,10(2):280-287.

    CHENG R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology,2020,10(2):280-287.
    [5] 朱铭珠, 姚光远, 刘玉强, 等. 填埋场HDPE膜漏洞靶向电动修补技术影响因素[J]. 中国环境科学,2022,42(10):4696-4703.

    ZHU M Z, YAO G Y, LIU Y Q, et al. The influencing factors of targeted electric repair technology for HDPE membrane leakage in landfill[J]. China Environmental Science,2022,42(10):4696-4703.
    [6] 向锐. 危险废物填埋场导排层淤堵机理研究[D]. 武汉: 武汉科技大学, 2019.
    [7] SHACKELFORD C D, SAMPLE-LORD K M. Hydraulic conductivity and compatibility of bentonite for hydraulic containment barriers[C]//From soil behavior fundamentals to innovations in geotechnical engineering. Atlanta: American Society of Civil Engineers, 2014.
    [8] 于泽溪, 李育超, 陈冠年. 钠质膨润土渗透性与膨胀性及可塑性的相关性[J]. 哈尔滨工业大学学报,2020,52(11):97-106.

    YU Z X, LI Y C, CHEN G N. Correlation between permeability, swelling, and plasticity of sodium bentonite[J]. Journal of Harbin Institute of Technology,2020,52(11):97-106.
    [9] 高子瑞, 陈涛, 徐永福. 盐溶液对膨润土膨胀性的影响[J]. 岩土力学,2018,39(1):249-253.

    GAO Z R, CHEN T, XU Y F. Effect of salt solution on swelling characteristics of bentonite[J]. Rock and Soil Mechanics,2018,39(1):249-253.
    [10] XIANG G S, YE W M, XU Y F, et al. Swelling deformation of Na-bentonite in solutions containing different cations[J]. Engineering Geology,2020,277:105757. doi: 10.1016/j.enggeo.2020.105757
    [11] 陈晓雄. 聚合物改性膨润土基阻隔材料的污染物迁移特性研究[D]. 武汉: 华中科技大学, 2021.
    [12] 张弦, 叶春松, 贾旭翔, 等. 基于DLVO理论计算球形氢氧化镁胶体的Hamaker常数[J]. 热力发电,2018,47(12):47-52.

    ZHANG X, YE C S, JIA X X, et al. Calculation of Hamaker constant of spherical magnesium hydroxide colloid based on DLVO theory[J]. Thermal Power Generation,2018,47(12):47-52.
    [13] XU Z, SUN Y L, NIU Z W, et al. Kinetic determination of sedimentation for GMZ bentonite colloids in aqueous solution: effect of pH, temperature and electrolyte concentration[J]. Applied Clay Science,2020,184:105393. doi: 10.1016/j.clay.2019.105393
    [14] 郭争争, 管俊芳, 陈菲, 等. 重金属对膨润土膨胀性的影响[J]. 矿产综合利用,2020(1):203-208.

    GUO Z Z, GUAN J F, CHEN F, et al. Effect of heavy metal ions on swelling property of bentonite[J]. Multipurpose Utilization of Mineral Resources,2020(1):203-208.
    [15] 高仁波, 赵云良, 陈立才, 等. 蒙脱石层电荷密度对其二维纳米片剥离的影响[J]. 硅酸盐学报,2021,49(7):1420-1428.

    GAO R B, ZHAO Y L, CHEN L C, et al. Effect of layer charge density on the exfoliation of montmorillonite to prepare two-dimensional nanosheets[J]. Journal of the Chinese Ceramic Society,2021,49(7):1420-1428.
    [16] 李勤, 陆现彩, 张立虎, 等. 蒙脱石层间阳离子交换的分子模拟[J]. 南京大学学报(自然科学),2019,55(6):879-887.

    LI Q, LU X C, ZHANG L H, et al. Molecular simulation of interlayer cation exchange of montmorillonite[J]. Journal of Nanjing University (Natural Science),2019,55(6):879-887.
    [17] 孙娇. 危险废物填埋场的稳定性研究[D]. 重庆: 重庆交通大学, 2012.
    [18] 任俊蓉, 祐文彬, 彭瑞东, 等. 降雨对危险废弃物填埋场稳定性影响的数值模拟研究[C]//北京力学会第20届学术年会论文集. 北京: 北京力学会, 2014: 520-521.
    [19] 王宝, 董兴玲. 利用膨润土的膨胀和稠度特性对GCL渗透系数进行预测的试验研究[J]. 土木建筑与环境工程, 2015, 37(5): 66-71.

    WANG B, DONG X L. Relationship between hydraulic conductivity and swell index and liquid limits of GCL[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(5): 66-71.
    [20] GASTELO J, LI D, TIAN K, et al. Hydraulic conductivity of GCL overlap permeated with saline solutions[J]. Waste Management,2023,157:348-356. doi: 10.1016/j.wasman.2022.12.028
    [21] 沈胜强, 杜延军, 张润, 等. 基于改进滤失试验的CaCl2溶液作用下膨润土滤饼渗透系数[J]. 东南大学学报(自然科学版),2016,46(增刊1):179-183.

    SHEN S Q, DU Y J, ZHANG R, et al. Hydraulic conductivity of bentonite filter cakes in concentrated calcium chloride solutions based on modified fluid loss test[J]. Journal of Southeast University (Natural Science Edition),2016,46(Suppl 1):179-183.
    [22] TIAN H H, WEI C F, YAN R T. Thermal and saline effect on mineral-water interactions in compacted clays: a NMR-based study[J]. Applied Clay Science,2019,170:106-113. doi: 10.1016/j.clay.2019.01.015
    [23] 范日东. 重金属作用下土-膨润土竖向隔离屏障化学相容性和防渗截污性能研究[D]. 南京: 东南大学, 2017.
    [24] 焦怡畅, 赵青, 吴丰昌. 表面活性剂增强黑磷纳米片复合溶液体系分散稳定性研究[J/OL]. 环境科学研究: 1-12. [2024-01-08]. https: //doi. org/10.13198/j. issn. 1001-6929.2023. 11.23.

    JIAO Y C, ZHAO Q, WU F C. Study on dispersion stability of black phosphorus nanosheet composite solution enhanced by surfactant[J/OL]. Research of Environmental Sciences: 1-12. [2024-01-08].https://doi.org/10.13198/j.issn.1001-6929.2023.11.23.
    [25] 万江, 王晓焕, 刘志勇. 膨润土-水悬浮体系的zeta电位研究[J]. 非金属矿,2017,40(4):23-25.

    WAN J, WANG X H, LIU Z Y. Study on zeta potential of bentonite-water suspension system[J]. Non-Metallic Mines,2017,40(4):23-25.
    [26] 杨宗义, 刘文礼, 焦小淼, 等. 蒙脱石分散体系中用Zeta电位修正静电作用能的计算[J]. 煤炭学报,2017,42(6):1572-1578.

    YANG Z Y, LIU W L, JIAO X M, et al. Calculation of electrostatic interaction energy by using Zeta potential in montmorillonite dispersion system[J]. Journal of China Coal Society,2017,42(6):1572-1578.
    [27] 刘晓光, 李国军, 仝建峰, 等. 氧化锆水系料浆稳定性研究[J]. 材料工程,2003,31(9):30-32. doi: 10.3969/j.issn.1001-4381.2003.09.008

    LIU X G, LI G J, TONG J F, et al. Study on stability of zirconia aqueous slurries[J]. Journal of Materials Engineering,2003,31(9):30-32. doi: 10.3969/j.issn.1001-4381.2003.09.008
    [28] 严昊炜, 崔家瑞, 张泽朋. 层间阳离子对蒙脱石凝胶性能的影响[J]. 中国粉体技术,2019,25(3):48-54.

    YAN H W, CUI J R, ZHANG Z P. Effects of interlayer cations on its gel performances of montmorillonite[J]. China Powder Science and Technology,2019,25(3):48-54.
    [29] 许四法, 魏伟伟, 刘继状, 等. 溶液特征对石屑掺膨润土混合土的渗透特性影响[J]. 岩土工程学报,2019,41(增刊2):41-44.

    XU S F, WEI W W, LIU J Z, et al. Influences of solution characteristics on permeability of stone-bentonite mixtures[J]. Chinese Journal of Geotechnical Engineering,2019,41(Suppl 2):41-44.
    [30] KEMAL D O Y M U S. The effect of ionic electrolytes and pH on the Zeta potential of fine coal particles[J]. Turkish Journal of Chemistry,2007,31(6):589-597.
    [31] 杜伟, 李航, 李睿, 等. 不同浓度Na+在紫色土颗粒表面电场作用下的吸附动力学研究[J]. 西南大学学报(自然科学版),2015,37(7):7-15.

    DU W, LI H, LI R, et al. The adsorption dynamics of different concentrations of Na+ on purple soil particles under the effect of surface electric field[J]. Journal of Southwest University (Natural Science Edition),2015,37(7):7-15.
    [32] 王智巧, 马杰, 陈雅丽, 等. 不同环境条件下水铁矿和针铁矿纳米颗粒稳定性[J]. 环境科学,2020,41(5):2292-2300.

    WANG Z Q, MA J, CHEN Y L, et al. Stability of ferrihydrite and goethite nanoparticles under different environmental conditions[J]. Environmental Science,2020,41(5):2292-2300. □
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 录用日期:  2024-03-01
  • 修回日期:  2024-02-17

目录

    /

    返回文章
    返回