Study on ecosystem service evaluation and service bundles identification in the mountain-river-sea coupling key zone: a case study of southwest Guangxi Karst - Beibu Gulf
-
摘要:
明确山江海耦合关键带生态系统服务与服务簇空间分布对区域生态功能管理和提高生态系统服务能力具有重要意义。通过InVEST模型和多重生态系统服务景观指数(MESLI)评估桂西南喀斯特-北部湾地区2018年生态系统服务功能及多重生态系统服务能力,进而探讨生态系统服务权衡/协同关系与分布格局,并通过自组织特征映射网络识别不同服务簇。结果表明:山江海耦合关键带多重生态系统服务能力较高,MESLI均值为1.65;产水、食物生产服务呈现东南向西北降低的分布特征;MESLI与碳储量、土壤保持、生境质量、水质净化服务呈现中间低四周高的分布特征。随着地形位梯度的增加,产水、食物生产服务逐渐降低,MESLI与生境质量、碳储量、水土保持、水质净化服务逐渐提高。生态系统服务之间主要以协同关系为主,食物生产与碳储量、生境质量、土壤保持、水质净化服务为权衡关系,权衡高值区主要分布在左右江流域关键带和北部湾海岸关键带地区。山江海耦合关键带可划分为生态保育簇、土壤保持簇、食物供给簇、人居环境簇4类,其中生态保育簇分布面积最大,主要分布在西北喀斯特关键带山区及东南十万大山、六万大山等地区,MESLI最大;人居环境簇主要分布在食物供给簇地区周围,分布面积最小,MESLI最小。因此,该地区需要加强对人居环境簇的生态管理与修复,进而提高山江海耦合关键带多重生态系统服务能力,促进地区协调可持续发展。
Abstract:Clarifying the spatial distribution of ecosystem services and service clusters in the mountain-river-sea coupling key zones is of great significance for regional ecological function management and ecosystem service capacity improvement. To assess the level of ecosystem services and the capacity of multiple ecosystem services in the southwestern Guangxi Karst-Beibu Gulf in 2018 through the InVEST model and multiple ecosystem services landscape index, and then to explore ecosystem service trade-offs/synergistic relationships and distribution patterns, and to identify the different service clusters through the self organizing feature map. The results showed that the multiple ecosystem service capacity of the mountain-river-sea coupling key zone was high, with the MESLI average of 1.65. The water yield and food production showed a distribution characteristic of decreasing from southeast to northwest, and MESLI and carbon storage and sequestration, soil conservation, habitat quality, and water quality purification services showed the distribution characteristics of low in the middle and high in the surrounding areas. As the topographic gradient increases, water yield and food production gradually decrease, and MESLI, carbon storage and sequestration, soil conservation, habitat qulaity, and water quality purification increased with the increase of topographic potential gradient. The ecosystem services were mainly synergistic with each other, and food production and carbon storage, habitat qulaity, soil conservation, and water quality purification were trade-offs, with the high trade-off areas mainly distributed in the key zone of Zuojiang River and Youjiang River basins and the key zone of Beibu Gulf coast. The mountain-river-sea coupling key zones can be divided into four categories, namely, ecological conservation, soil conservation, food supply, and human habitat bundles. Among them, the ecological conservation bundle has the largest distribution area and is mainly distributed in the mountainous areas of northwestern Karst key zone, and the areas of southeastern Shiwan Mountain and Liuwan Mountain, with the largest MESLI, while the habitat bundle is mainly distributed around the food supply bundle, with the smallest distribution area and the smallest MESLI. Therefore, the region needs to strengthen the ecological management and restoration of the habitat bundles, which is conducive to improving the multiple ecosystem service capacity of the mountain-river-sea coupling key zone, and promoting the coordinated and sustainable development of the region.
-
表 1 地形位指数分级标准
Table 1. Topographic potential index classification criteria
梯度分级 地形位指数 Ⅰ 0~0.64 Ⅱ 0.65~1.10 Ⅲ 1.11~1.58 Ⅳ 1.59~2.06 Ⅴ 2.07~3.14 -
[1] 张波, 曲建升, 丁永建. 国际临界带研究发展回顾与美国临界带研究进展介绍[J]. 世界科技研究与发展,2010,32(5):723-728. doi: 10.3969/j.issn.1006-6055.2010.05.044ZHANG B, QU J S, DING Y J. Review of international critical zone research and its development in America[J]. World Sci-Tech R&D,2010,32(5):723-728. doi: 10.3969/j.issn.1006-6055.2010.05.044 [2] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展,2016,31(12):1228-1234.AN P J, ZHANG Z Q, WANG L W. Review of earth critical zone research[J]. Advances in Earth Science,2016,31(12):1228-1234. [3] 杨建锋, 张翠光. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质,2014,41(3):98-104.YANG J F, ZHANG C G. Earth’s critical zone: a holistic framework for geo-environmental researches[J]. Hydrogeology & Engineering Geology,2014,41(3):98-104. [4] 杨顺华, 宋效东, 吴华勇, 等. 地球关键带研究评述: 现状与展望[J/OL]. 土壤学报. [2024-03-04]. http://kns.cnki.net/kcms/ detail/32.1119.P.20230411.1337.012. html.YANG S H, SONG X D, WU H Y, et al. A review and discussion on the earth's critical zone research: status quo and prospect[J/OL]. Journal of Soil Science. [2024-03-04]. http://kns.cnki.net/kcms/ detail/32.1119.P.20230411.1337.012.html. [5] 陈金珂, 蒲俊兵, 李建鸿, 等. 基于土地利用情景模拟的喀斯特关键带生态系统服务权衡与协同分析: 以蒙自喀斯特断陷盆地为例[J]. 中国岩溶,2023,42(1):94-108. doi: 10.11932/karst20230108CHEN J K, PU J B, LI J H, et al. Trade-off and synergy of ecosystem services of a Karst critical zone based on land use scenario simulation: take Mengzi Karst graben basin as a study case[J]. Carsologica Sinica,2023,42(1):94-108. doi: 10.11932/karst20230108 [6] 中国科学院地球环境研究所. 中国科学院黄土高原地球关键带与地表通量野外观测研究站[J]. 中国科学院院刊,2020,35(3):388-391. [7] 陈琪, 王晓丹, 夏炎, 等. 地球关键带生态系统服务评价方法研究[J]. 南京大学学报(自然科学),2022,58(6):1070-1086.CHEN Q, WANG X D, XIA Y, et al. Research on the evaluation method of the ecosystem services of Earth's critical zone[J]. Journal of Nanjing University (Natural Science),2022,58(6):1070-1086. [8] SHEN J S, LI S C, LIANG Z, et al. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration[J]. Ecosystem Services,2020,43:101103. doi: 10.1016/j.ecoser.2020.101103 [9] 陈峰, 李红波, 张安录. 基于生态系统服务的中国陆地生态风险评价[J]. 地理学报,2019,74(3):432-445. doi: 10.11821/dlxb201903003CHEN F, LI H B, ZHANG A L. Ecological risk assessment based on terrestrial ecosystem services in China[J]. Acta Geographica Sinica,2019,74(3):432-445. doi: 10.11821/dlxb201903003 [10] RODRÍGUEZ-LOINAZ G, ALDAY J G, ONAINDIA M. Multiple ecosystem services landscape index: a tool for multifunctional landscapes conservation[J]. Journal of Environmental Management,2015,147:152-163. DOI: 10.1016/j.jenvman.2014.09.001 [11] 韦钧培, 杨云川, 谢鑫昌, 等. 基于服务簇的南宁市生态系统服务权衡与协同关系研究[J]. 生态与农村环境学报,2022,38(1):21-31.WEI J P, YANG Y C, XIE X C, et al. Quantifying ecosystem service trade-offs and synergies in Nanning city based on ecosystem service bundles[J]. Journal of Ecology and Rural Environment,2022,38(1):21-31. [12] DOU H S, LI X B, LI S K, et al. Mapping ecosystem services bundles for analyzing spatial trade-offs in Inner Mongolia, China[J]. Journal of Cleaner Production,2020,256:120444. doi: 10.1016/j.jclepro.2020.120444 [13] 李慧蕾, 彭建, 胡熠娜, 等. 基于生态系统服务簇的内蒙古自治区生态功能分区[J]. 应用生态学报,2017,28(8):2657-2666.LI H L, PENG J, HU Y N, et al. Ecological function zoning in Inner Mongolia Autonomous Region based on ecosystem service bundles[J]. Chinese Journal of Applied Ecology,2017,28(8):2657-2666. [14] 蒋红波, 覃盟琳, 王政强, 等. 基于生态系统服务簇评价的长沙市生态修复优先区识别[J]. 环境工程技术学报,2023,13(4):1325-1333. doi: 10.12153/j.issn.1674-991X.20220983JIANG H B, QIN M L, WANG Z Q, et al. Identification of priority areas for ecological restoration based on evaluation of ecosystem service bundles: taking Changsha City as an example[J]. Journal of Environmental Engineering Technology,2023,13(4):1325-1333. doi: 10.12153/j.issn.1674-991X.20220983 [15] 冯兆, 彭建, 吴健生. 基于生态系统服务簇的深圳市生态系统服务时空演变轨迹研究[J]. 生态学报,2020,40(8):2545-2554.FENG Z, PENG J, WU J S. Ecosystem service bundles based approach to exploring the trajectories of ecosystem service spatiotemporal change: a case study of Shenzhen City[J]. Acta Ecologica Sinica,2020,40(8):2545-2554. [16] 申嘉澍, 梁泽, 刘来保, 等. 雄安新区生态系统服务簇权衡与协同[J]. 地理研究,2020,39(1):79-91.SHEN J S, LIANG Z, LIU L B, et al. Trade-offs and synergies of ecosystem service bundles in Xiongan New Area[J]. Geographical Research,2020,39(1):79-91. [17] CROUZAT E, MOUCHET M, TURKELBOOM F, et al. Assessing bundles of ecosystem services from regional to landscape scale: insights from the French Alps[J]. Journal of Applied Ecology,2015,52(5):1145-1155. doi: 10.1111/1365-2664.12502 [18] 刘颂, 张浩鹏, 裴新生, 等. 基于生态系统服务簇时空演变的生态功能分区研究: 以安徽省芜湖市为例[J]. 中国园林, 2023, 39(4): 121-125.LIU S, ZHANG H P, PEI X S, et al. Ecological function zoning based on spatiotemporal change of ecosystem service bundles: a case study of Wwuhu City in Anhui Province.[J]. Chinese Landscape Architecture, 2023, 39(4): 121-125. [19] ZHANG Z, HU B Q, QIU H H. Comprehensive assessment of ecological risk in southwest Guangxi-Beibu Bay based on DPSIR model and OWA-GIS[J]. Ecological Indicators,2021,132:108334. doi: 10.1016/j.ecolind.2021.108334 [20] 高春莲, 胡宝清, 黄思敏, 等. 山江海耦合关键带生态系统服务价值时空变化及其权衡研究[J]. 水土保持研究,2024,31(2):264-274.GAO C L, HU B Q, HUANG S M, et al. Spatio-temporal changes and trade-offs of ecosystem service value in mountain-river-sea coupling key zone research[J]. Research of Soil and Water Conservation,2024,31(2):264-274. [21] 张泽, 胡宝清, 丘海红, 等. 基于山江海视角与SRP模型的桂西南-北部湾生态环境脆弱性评价[J]. 地球与环境,2021,49(3):297-306.ZHANG Z, HU B Q, QIU H H, et al. Ecological environment vulnerability assessment of southwest Guangxi-Beibu Gulf based on the perspective of mountains, rivers and sea and SRP model[J]. Earth and Environment,2021,49(3):297-306. [22] 黄思敏, 胡宝清, 韦高杨, 等. 山江海地域系统关键带综合分类研究: 以桂西南喀斯特区-北部湾海岸带为例[J]. 广西科学院学报,2023,39(3):280-290.HUANG S M, HU B Q, WEI G Y, et al. Comprehensive classification research on key zones of mountain-river-sea geographical system-taking southwest Guangxi Karst area-beibu gulf coastal zone as an example[J]. Journal of Guangxi Academy of Sciences,2023,39(3):280-290. [23] YAN F P, SHANGGUAN W, ZHANG J, et al. Depth-to-bedrock map of China at a spatial resolution of 100 meters[J]. Scientific Data,2020,7:2. doi: 10.1038/s41597-019-0345-6 [24] 潘韬, 吴绍洪, 戴尔阜, 等. 基于InVEST模型的三江源区生态系统水源供给服务时空变化[J]. 应用生态学报,2013,24(1):183-189.PAN T, WU S H, DAI E F, et al. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model[J]. Chinese Journal of Applied Ecology,2013,24(1):183-189. [25] 高嫄, 原野, 赵艺芳. 基于生态系统服务供需的农牧交错带流域生态修复分区: 以桑干河上游为例[J]. 环境工程技术学报,2023,13(3):1214-1222.GAO Y, YUAN Y, ZHAO Y F. Ecological restoration zoning in farming-grazing transitional zone based on the supply and demand of the ecosystem services: a case study of the upper reaches of the Sanggan River[J]. Journal of Environmental Engineering Technology,2023,13(3):1214-1222. [26] 赵文亮, 贺振, 贺俊平, 等. 基于MODIS-NDVI的河南省冬小麦产量遥感估测[J]. 地理研究,2012,31(12):2310-2320.ZHAO W L, HE Z, HE J P, et al. Remote sensing estimation for winter wheat yield in Henan based on the MODIS-NDVI data[J]. Geographical Research,2012,31(12):2310-2320. [27] 李瑾璞, 夏少霞, 于秀波, 等. 基于InVEST模型的河北省陆地生态系统碳储量研究[J]. 生态与农村环境学报,2020,36(7):854-861.LI J P, XIA S X, YU X B, et al. Evaluation of carbon storage on terrestrial ecosystem in Hebei Province based on InVEST model[J]. Journal of Ecology and Rural Environment,2020,36(7):854-861. [28] 张静静, 朱文博, 朱连奇, 等. 伏牛山地区森林生态系统服务权衡/协同效应多尺度分析[J]. 地理学报,2020,75(5):975-988. doi: 10.11821/dlxb202005007ZHANG J J, ZHU W B, ZHU L Q, et al. Multi-scale analysis of trade-off/synergy effects of forest ecosystem services in the Funiu Mountain Region[J]. Acta Geographica Sinica,2020,75(5):975-988. doi: 10.11821/dlxb202005007 [29] 赵雪雁, 杜昱璇, 李花, 等. 黄河中游城镇化与生态系统服务耦合关系的时空变化[J]. 自然资源学报,2021,36(1):131-147. doi: 10.31497/zrzyxb.20210109ZHAO X Y, DU Y X, LI H, et al. Spatio-temporal changes of the coupling relationship between urbanization and ecosystem services in the Middle Yellow River[J]. Journal of Natural Resources,2021,36(1):131-147. doi: 10.31497/zrzyxb.20210109 [30] 顾晋饴, 李一平, 杜薇. 基于InVEST模型的太湖流域水源涵养能力评价及其变化特征分析[J]. 水资源保护,2018,34(3):62-67. doi: 10.3880/j.issn.1004-6933.2018.03.10GU J Y, LI Y P, DU W. Evaluation on water source conservation capacity and analysis of its variation characteristics of Taihu Lake Basin based on InVEST model[J]. Water Resources Protection,2018,34(3):62-67. doi: 10.3880/j.issn.1004-6933.2018.03.10 [31] 徐彩仙, 巩杰, 李焱, 等. 基于地形梯度的甘肃白龙江流域典型生态系统服务分布特征[J]. 生态学报,2020,40(13):4291-4301.XU C X, GONG J, LI Y, et al. Spatial distribution characteristics of typical ecosystem services based on terrain gradients of Bailongjiang Watershed in Gansu[J]. Acta Ecologica Sinica,2020,40(13):4291-4301. [32] XU G Y, XIONG K N, SHU T, et al. Bundling evaluating changes in ecosystem service under Karst rocky desertification restoration: projects a case study of Huajiang-Guanling, Guizhou Province, Southwest China[J]. Environmental Earth Sciences,2022,81(10):302. doi: 10.1007/s12665-022-10400-1 [33] 张泽, 胡宝清, 丘海红, 等. 桂西南喀斯特-北部湾海岸带生态环境脆弱性时空分异与驱动机制研究[J]. 地球信息科学学报,2021,23(3):456-466. doi: 10.12082/dqxxkx.2021.200278ZHANG Z, HU B Q, QIU H H, et al. Spatio-temporal differentiation and driving mechanism of ecological environment vulnerability in southwest Guangxi Karst-Beibu Gulf coastal zone[J]. Journal of Geo-Information Science,2021,23(3):456-466. doi: 10.12082/dqxxkx.2021.200278 [34] 钱彩云, 巩杰, 张金茜, 等. 甘肃白龙江流域生态系统服务变化及权衡与协同关系[J]. 地理学报,2018,73(5):868-879. doi: 10.11821/dlxb201805007QIAN C Y, GONG J, ZHANG J X, et al. Change and tradeoffs-synergies analysis on watershed ecosystem services: a case study of Bailongjiang Watershed, Gansu[J]. Acta Geographica Sinica,2018,73(5):868-879. doi: 10.11821/dlxb201805007 [35] 孙艺杰, 任志远, 郝梦雅, 等. 黄土高原生态系统服务权衡与协同时空变化及影响因素: 以延安市为例[J]. 生态学报,2019,39(10):3443-3454.SUN Y J, REN Z Y, HAO M Y, et al. Spatial and temporal changes in the synergy and trade-off between ecosystem services, and its influencing factors in Yanan, Loess Plateau[J]. Acta Ecologica Sinica,2019,39(10):3443-3454. [36] YANG G F, GE Y, XUE H, et al. Using ecosystem service bundles to detect trade-offs and synergies across urban–rural complexes[J]. Landscape and Urban Planning,2015,136:110-121. doi: 10.1016/j.landurbplan.2014.12.006 [37] MADRIGAL-MARTÍNEZ S, MIRALLES I GARCÍA J L. Assessment method and scale of observation influence ecosystem service bundles[J]. Land,2020,9(10):392. ⊕ doi: 10.3390/land9100392