Volume 8 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
XIAO Wei, HE Youjiang, MENG Fan, XU Jun, LIU Shijie, YANG Xiaoyang. Development and comparison of atmospheric chemical mechanisms in air quality numerical model[J]. Journal of Environmental Engineering Technology, 2018, 8(1): 12-22. doi: 10.3969/j.issn.1674-991X.2018.01.002
Citation: XIAO Wei, HE Youjiang, MENG Fan, XU Jun, LIU Shijie, YANG Xiaoyang. Development and comparison of atmospheric chemical mechanisms in air quality numerical model[J]. Journal of Environmental Engineering Technology, 2018, 8(1): 12-22. doi: 10.3969/j.issn.1674-991X.2018.01.002

Development and comparison of atmospheric chemical mechanisms in air quality numerical model

doi: 10.3969/j.issn.1674-991X.2018.01.002
More Information
  • Corresponding author: Youjiang HE E-mail: heyj@craes.org.cn
  • Received Date: 2017-07-13
  • Publish Date: 2018-01-20
  • The atmospheric chemical mechanism is a key component of the air quality numerical model (AQNM), and is an important mean and method for investigating the atmospheric chemical processes. The development of the three simplified chemical mechanisms including the carbon bond mechanism (CBM), the regional atmospheric chemical mechanism (RACM), and the Statewide Air Pollution Research Center mechanism (SAPRC) which are widely used in AQNM were summarized. The comparison of the lump styles, the chemical species and the reactions, as well as the updates and the applications in AQNM of the different chemical mechanisms were presented. The comparisons of the simulation results of the AQNM by using different chemical mechanisms in previous studies were analyzed and summarized, and the reasons of the difference caused by the different chemical mechanisms used in the AQNM discussed. Additionally, the suggestion of the selection and application of the chemical mechanisms in AQNM research was proposed.

     

  • loading
  • [1]
    CHEN S, REN X, MAO J , et al. A comparison of chemical mechanisms based on TRAMP-2006 field data[J]. Atmospheric Environment, 2010,44(33):4116-4125.
    doi: 10.1016/j.atmosenv.2009.05.027
    [2]
    DODGE M C . Chemical oxidant mechanisms for air quality modeling:critical review[J]. Atmospheric Environment, 2000,34(12/13/14):2103-2130.
    doi: 10.1016/S1352-2310(99)00461-6
    [3]
    YU S, MATHUR R, SARWAR G , et al. Eta-CMAQ air quality forecasts for O3 and related species using three different photochemical mechanisms(CB4,CB05,SAPRC-99):comparisons with measurements during the 2004 ICARTT study[J]. Atmospheric Chemistry & Physics, 2010,10(6):3001-3025.
    [4]
    FRIEDLANDER S K, SEINFELD J H . Dynamic model of photochemical smog[J]. Environmental Science & Technology, 1969,3(11):1175-1181.
    doi: 10.1021/es60034a003
    [5]
    SAUNDERS S M, JENKIN M E, DERWENT R G , et al. Protocol for the development of the master chemical mechanism,MCM v3.part A:tropospheric degradation of non-aromatic volatile organic compounds[J]. Commercial Research, 2003,3(1):181-193.
    [6]
    JENKIN M E, SAUNDERS S M, PILLING M J . The tropospheric degradation of volatile organic compounds:a protocol for mechanism development[J]. Atmospheric Environment, 1997,31:81-104.
    doi: 10.1016/S1352-2310(96)00105-7
    [7]
    GEIGER H, BARNES I, BECKER K H , et al. Chemical mechanism development:laboratory studies and model applications[J]. Journal of Atmospheric Chemistry, 2002,42(1):323-357.
    doi: 10.1023/A:1015708517705
    [8]
    JENKIN M E, SAUNDERS S M, DERWENT R G , et al. Development of a reduced speciated VOC degradation mechanism for use in ozone models[J]. Atmospheric Environment, 2002,36(30):4725-4734.
    doi: 10.1016/S1352-2310(02)00563-0
    [9]
    STOCKWELL W R, LAWSON C V, SAUNDERS E , et al. A review of tropospheric atmospheric chemistry and gas-phase chemical mechanisms for air quality modeling[J]. Atmosphere, 2012,3(1):1-32.
    [10]
    HEARD A C, PILLING M J, TOMLIN A S . Mechanism reduction techniques applied to tropospheric chemistry[J]. Atmospheric Environment, 1998,32(6):1059-1073.
    doi: 10.1016/S1352-2310(97)00368-3
    [11]
    唐孝炎 . 大气环境化学[M]. 北京: 高等教育出版社, 1990.

    GERY M W, WHITTEN G Z, KILLUS J P , et al. A photochemical kinetics mechanism for urban and regional scale computer modeling[J].Journal of Geophysical Research, 1989,94:12925-12956.
    [13]
    石玉珍, 徐永福, 贾龙 . 大气化学机理的发展及应用[J]. 气候与环境研究, 2012,17(1):112-124.
    doi: 10.3878/j.issn.1006-9585.2011.10061

    SHI Y Z, XU Y F, JIA L . Development and application of atmospheric chemical mechanisms[J]. Climatic and Environmental Research, 2012,17(1):112-124. doi: 10.3878/j.issn.1006-9585.2011.10061
    [14]
    LIANG J, JACOBSON M Z . Comparison of a 4 000-reaction chemical mechanism with the carbon bond Ⅳ and an adjusted carbon bond Ⅳ-EX mechanism using SMVGEARⅡ[J]. Atmospheric Environment, 2000,34(18):3015-3026.
    doi: 10.1016/S1352-2310(99)00486-0
    [15]
    ADELMAN Z E . A reevaluation of the carbon bond-Ⅳ photochemical mechanism:tests of past changes,current updates,and implications to scientific and regulatory modeling[D]. Carolina:University of North Carolina, 1999.
    [16]
    ZAVERI R A, PETERS L K . A new lumped structure photochemical mechanism for large-scale applications[J]. Journal of Geophysical Research Atmospheres, 1999,104(23):30387-30415.
    doi: 10.1029/1999JD900876
    [17]
    向伟玲, 安俊岭, 王自发 , 等. 北京奥运会期间CBM-Z化学机制的模拟应用[J]. 气候与环境研究, 2010,15(5):551-559.

    XIANG W L, AN J L, WANG Z F , et al. Application of CBM-Z chemical mechanism during Beijing Olympics[J]. Climatic and Environmental Research, 2010,15(5):551-559.
    [18]
    YARWOOD G, RAO S, YOCKE M, et al. Updates to the carbon bond chemical mechanism:CB05 [C]//International Conference on Chemical Mechanisms.California:University of California, 2005: 2841-2842.
    [19]
    YARWOOD G, RAO S, YOCKE M , et al. Updates to the carbon bond chemical mechanism:CBM-Ⅴ[R]. Washington DC:US EPA, 2005: 246.
    [20]
    YARWOOD G, JUNG J, WHITTEN G Z, et al. Updates to the carbon bond mechanism for version 6(CB6) [C]//9th Annual CMAS Conference.California:University of California, 1997: 2841-2842.
    [21]
    GREG Y, GARY Z, WHITTEN J , et al. Development,evaluation and testing of version 6 of the carbon bond chemical mechanism(CB6)[R]. Texas:Texas Commission on Environmental Quality, 2010.
    [22]
    STOCKWELL W R, MIDDLETON P, CHANG J S , et al. The second generation regional acid deposition model chemical mechanism for regional air quality modeling[J]. Journal of Geophysical Research Atmospheres, 1990,951(10):16343-16367.
    [23]
    STOCKWELL W R . A homogeneous gas phase mechanism for use in a regional acid deposition model[J]. Atmospheric Environment, 1986,20(8):1615-1632.
    doi: 10.1016/0004-6981(86)90251-9
    [24]
    CHANG J S, BROST R A , ISAKSEN I S A,et al.A three-dimensional eulerian acid deposition model:physical concepts and formulation[J]. Journal of Geophysical Research Atmospheres, 1987,92(12):14681-14700.
    doi: 10.1029/JD092iD12p14681
    [25]
    STOCKWELL W R, KIRCHNER F, KUHN M , et al. A new mechanism for regional atmospheric chemistry modeling[J]. Journal of Geophysical Research, 1997,102(22):25847-25879.
    doi: 10.1029/97JD00849
    [26]
    GOLIFF W S, STOCKWELL W R, LAWSON C V . The regional atmospheric chemistry mechanism,version 2[J]. Atmospheric Environment, 2013,68(1):174-185.
    doi: 10.1016/j.atmosenv.2012.11.038
    [27]
    CARTER W . The SAPRC-99 chemical mechanism and updated VOC reactivity scales[R]. California:California Air Resources Board, 2003.
    [28]
    CARTER W P L . Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment[R]. California: California Air Resources Board, 1999.
    [29]
    CARTER W P L . Implementation of the Saprc-99 chemical mechanism into the models-3 framework[R]. California:the United State Environmental Agency, 2000.
    [30]
    CARTER W P L . Documentation for the saprc atmospheric photochemical mechanism preparation and emissions processing programs for implementation in airshed models[R]. California:California Air Resources Board, 1988.
    [31]
    HARLEY R A, SAWYER R F . Updated photochemical modeling for California's south coast air basin:comparison of chemical mechanisms and motor vehicle emission inventories[J]. Environmental Science & Technology, 1997,31(10):2829-2839.
    doi: 10.1021/es9700562
    [32]
    CARTER W P L . Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 2010,44(40):5324-5335.
    doi: 10.1016/j.atmosenv.2010.01.026
    [33]
    AALTO T, LALLO M, HATAKKA J , et al. Atmospheric hydrogen variations and traffic emissions at an urban site in Finland[J]. Atmospheric Chemistry & Physics, 2009,9(19):7387-7396.
    [34]
    BROWN S S, RYERSON T B, WOLLNY A G , et al. Variability in nocturnal nitrogen oxide processing and its role in regional air quality[J]. Science, 2006,311:67-70.
    doi: 10.1126/science.1120120 pmid: 16400145
    [35]
    BUTKOVSKAYA N I, KUKUI A, POUVESLE N A , et al. Rate constant and mechanism of the reaction of OH radicals with acetic acid in the temperature range of 229-300 K[J]. Iser Discussion Paper, 1997,13(6):1486-1492.
    doi: 10.1021/jp048444v
    [36]
    TOMBROU M, BOSSIOLI E, PROTONOTARIOU A P , et al. Coupling GEOS-CHEM with a regional air pollution model for Greece[J]. Atmospheric Environment, 2009,43(31):4793-4804.
    doi: 10.1016/j.atmosenv.2009.04.003
    [37]
    ATKINSON R, BAULCH D L, COX R A , et al. Evaluated kinetic and photochemical data for atmospheric chemistry:supplement Ⅳ:IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry[J]. Atmospheric Environment Part A:General Topics, 1992,26(21):1187-1230.
    doi: 10.1016/0960-1686(92)90383-V
    [38]
    BLOSS C, WAGNER V, JENKIN M E , et al. Development of a detailed chemical mechanism(MCMv3.1)for the atmospheric oxidation of aromatic hydrocarbons[J]. Atmospheric Chemistry & Physics, 2004,5(3):641-664.
    [39]
    SINGH H B, KANAKIDOU M, CRUTZEN P J , et al. High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere[J]. Nature, 1995,378:50-54.
    doi: 10.1038/378050a0
    [40]
    PUN B K, SEIGNEUR C . Investigative modeling of new pathways for secondary organic aerosol formation[J]. Atmospheric Chemistry & Physics Discussions, 2007,7(9):2199-2216.
    [41]
    LIN Y H, ZHANG H, PYE H O , et al. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides[J]. Pnas, 2013,110(17):6718-6723.
    doi: 10.1073/pnas.1221150110
    [42]
    SARWAR G, GANTT B, SCHWEDE D , et al. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere[J]. Environmental Science & Technology, 2015,49(15):9203-9211.
    doi: 10.1021/acs.est.5b01657 pmid: 26151227
    [43]
    YARWOOD G, GOOKYOUNG H , CARTER W P L,et al.Environmental chamber experiments to evaluate NOx sinks and recycling in atmospheric chemical mechanisms[R]. Texas:University of Texas, 2012.
    [44]
    HILDEBRANDT R ,YARWOOD L H G.Interactions between organic aerosol and NOx:influence on oxidant production[R]. Texas:University of Texas, 2013.
    [45]
    EMERY C J, JUNG B . Improvements to CAMx snow cover treatments and carbon bond chemical mechanism for winter ozone[R]. Salt Lake City:Ramboll Environ, 2015.
    [46]
    JACOBS M I, BURKE W J, ELROD M J . Kinetics of the reactions of isoprene-derived hydroxynitrates:gas phase epoxide formation and solution phase hydrolysis[J]. Atmospheric Chemistry & Physics, 2014,14(8):8933-8946.
    doi: 10.5194/acp-14-8933-2014
    [47]
    CROUNSE J D, KNAP H C, ORNSO K B . Atmospheric fate of methacrolein:peroxy radical isomerization following addition of OH and O2[J]. The Journal of Physical Chemistry A, 2012,116(24):5756-5762.
    doi: 10.1021/jp211560u pmid: 22452246
    [48]
    王雪松, 李金龙 . 北京地区夏季PM10污染的数值模拟研究[J]. 北京大学学报(自然科学版), 2003,39(3):419-427.

    WANG X S, LI J L . A numerical simulation study of PM10 pollution in Beijing during summer time[J]. Universitatis Pekinensis(Acta Scientiarum Naturalium), 2003,39(3):419-427.
    [49]
    黄晓波, 殷晓鸿, 黄志炯 , 等. 不同模式对珠三角地区细颗粒物污染模拟效果对比评估[J]. 环境科学学报, 2016,36(10):3505-3514.
    doi: 10.13671/j.hjkxxb.2016.0032

    HUANG X B, YIN X H, HUANG Z J , et al. Evaluation and intercomparison of PM2.5 simulations by air quality models over Pearl River Delta[J]. Acta Scientiae Circumstantiae, 2016,36(10):3505-3514. doi: 10.13671/j.hjkxxb.2016.0032
    [50]
    陈云波, 徐峻, 何友江 , 等. 北京市冬季典型重污染时段PM2.5污染来源模式解析[J]. 环境科学研究, 2016,29(5):627-636.
    doi: 10.13198/j.issn.1001-6929.2016.05.03

    CHEN Y B, XU J, HE Y J , et al. Model analytic research of typical heavy PM2.5 pollution periods in winter in Beijing[J]. Research of Environmental Sciences, 2016,29(5):627-636. doi: 10.13198/j.issn.1001-6929.2016.05.03
    [51]
    ZHANG M G, XU Y F, UNO I , et al. A numerical study of tropospheric ozone in the springtime in East Asia[J]. Advances in Atmospheric Sciences, 2004,21(2):163-170.
    doi: 10.1007/BF02915702
    [52]
    刘峻峰, 李金龙, 白郁华 . 大气光化学烟雾反应机理比较:Ⅰ.O3和NOx的比较[J]. 环境化学, 2001,20(4):305-312.
    doi: 10.3321/j.issn:0254-6108.2001.04.001

    LIU J F, LI J L, BAI Y H . A comparison of atmospheric photochemical michanisms:Ⅰ.O3 and NOx[J]. Environmental Chemistry, 2001,20(4):305-312. doi: 10.3321/j.issn:0254-6108.2001.04.001
    [53]
    KUHN M ,BUILTJES P J H,POPPE D,et al.Intercomparison of the gas-phase chemistry in several chemistry and transport models[J]. Atmospheric Environment, 1998,32(4):693-709.
    doi: 10.1016/S1352-2310(97)00329-4
    [54]
    LUECKEN D J, SARWAR S P, JANG C . Effects of using the CB05 vs SAPRC99 vs CB4 chemical mechanism on model predictions:ozone and gas-phase photochemical precursor concentrations[J]. Atmospheric Environment, 2008,42(23):5805-5820.
    doi: 10.1016/j.atmosenv.2007.08.056
    [55]
    SHEARER S M, HARLEY R A, JIN L , et al. Comparison of SAPRC99 and SAPRC07 mechanisms in photochemical modeling for Central California[J]. Atmospheric Environment, 2012,46(3):205-216.
    doi: 10.1016/j.atmosenv.2011.09.079
    [56]
    LI J, ZHANG H, YING Q . Comparison of the SAPRC07 and SAPRC99 photochemical mechanisms during a high ozone episode in Texas:differences in concentrations,OH budget and relative response factors[J]. Atmospheric Environment, 2012,54(5):25-35.
    doi: 10.1016/j.atmosenv.2012.02.034
    [57]
    FARAJI M, KIMURA Y, MCDONALD-BULLER E , et al. Comparison of the carbon bond and SAPRC photochemical mechanisms under conditions relevant to Southeast Texas[J]. Atmospheric Environment, 2008,42(23):5821-5836.
    doi: 10.1016/j.atmosenv.2007.07.048
    [58]
    KIM Y, SARTELET K, SEIGNEUR C . Comparison of two gas-phase chemical kinetic mechanisms of ozone formation over Europe[J]. Journal of Atmospheric Chemistry, 2009,62(2):89-119.
    doi: 10.1007/s10874-009-9142-5
    [59]
    KIM Y, SARTELET K, SEIGNEUR C . Formation of secondary aerosols over Europe:comparison of two gas-phase chemical mechanisms[J]. Atmospheric Chemistry & Physics, 2011,11(2):1457-1477.
    [60]
    SIMONAITIS R, MEAGHER J F, BAILEY E M . Evaluation of the condensed carbon bond(CBM-Ⅳ) mechanism against smog chamber data at low VOC and NOx concentrations[J]. Atmospheric Environment, 1997,31(1):27-43.
    doi: 10.1016/S1352-2310(96)00155-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1395) PDF Downloads(704) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return