Citation: | XIAO Wei, HE Youjiang, MENG Fan, XU Jun, LIU Shijie, YANG Xiaoyang. Development and comparison of atmospheric chemical mechanisms in air quality numerical model[J]. Journal of Environmental Engineering Technology, 2018, 8(1): 12-22. doi: 10.3969/j.issn.1674-991X.2018.01.002 |
[1] |
CHEN S, REN X, MAO J , et al. A comparison of chemical mechanisms based on TRAMP-2006 field data[J]. Atmospheric Environment, 2010,44(33):4116-4125.
doi: 10.1016/j.atmosenv.2009.05.027 |
[2] |
DODGE M C . Chemical oxidant mechanisms for air quality modeling:critical review[J]. Atmospheric Environment, 2000,34(12/13/14):2103-2130.
doi: 10.1016/S1352-2310(99)00461-6 |
[3] |
YU S, MATHUR R, SARWAR G , et al. Eta-CMAQ air quality forecasts for O3 and related species using three different photochemical mechanisms(CB4,CB05,SAPRC-99):comparisons with measurements during the 2004 ICARTT study[J]. Atmospheric Chemistry & Physics, 2010,10(6):3001-3025.
|
[4] |
FRIEDLANDER S K, SEINFELD J H . Dynamic model of photochemical smog[J]. Environmental Science & Technology, 1969,3(11):1175-1181.
doi: 10.1021/es60034a003 |
[5] |
SAUNDERS S M, JENKIN M E, DERWENT R G , et al. Protocol for the development of the master chemical mechanism,MCM v3.part A:tropospheric degradation of non-aromatic volatile organic compounds[J]. Commercial Research, 2003,3(1):181-193.
|
[6] |
JENKIN M E, SAUNDERS S M, PILLING M J . The tropospheric degradation of volatile organic compounds:a protocol for mechanism development[J]. Atmospheric Environment, 1997,31:81-104.
doi: 10.1016/S1352-2310(96)00105-7 |
[7] |
GEIGER H, BARNES I, BECKER K H , et al. Chemical mechanism development:laboratory studies and model applications[J]. Journal of Atmospheric Chemistry, 2002,42(1):323-357.
doi: 10.1023/A:1015708517705 |
[8] |
JENKIN M E, SAUNDERS S M, DERWENT R G , et al. Development of a reduced speciated VOC degradation mechanism for use in ozone models[J]. Atmospheric Environment, 2002,36(30):4725-4734.
doi: 10.1016/S1352-2310(02)00563-0 |
[9] |
STOCKWELL W R, LAWSON C V, SAUNDERS E , et al. A review of tropospheric atmospheric chemistry and gas-phase chemical mechanisms for air quality modeling[J]. Atmosphere, 2012,3(1):1-32.
|
[10] |
HEARD A C, PILLING M J, TOMLIN A S . Mechanism reduction techniques applied to tropospheric chemistry[J]. Atmospheric Environment, 1998,32(6):1059-1073.
doi: 10.1016/S1352-2310(97)00368-3 |
[11] |
唐孝炎 . 大气环境化学[M]. 北京: 高等教育出版社, 1990.
GERY M W, WHITTEN G Z, KILLUS J P , et al. A photochemical kinetics mechanism for urban and regional scale computer modeling[J].Journal of Geophysical Research, 1989,94:12925-12956.
|
[13] |
石玉珍, 徐永福, 贾龙 . 大气化学机理的发展及应用[J]. 气候与环境研究, 2012,17(1):112-124.
doi: 10.3878/j.issn.1006-9585.2011.10061 SHI Y Z, XU Y F, JIA L . Development and application of atmospheric chemical mechanisms[J]. Climatic and Environmental Research, 2012,17(1):112-124. doi: 10.3878/j.issn.1006-9585.2011.10061
|
[14] |
LIANG J, JACOBSON M Z . Comparison of a 4 000-reaction chemical mechanism with the carbon bond Ⅳ and an adjusted carbon bond Ⅳ-EX mechanism using SMVGEARⅡ[J]. Atmospheric Environment, 2000,34(18):3015-3026.
doi: 10.1016/S1352-2310(99)00486-0 |
[15] |
ADELMAN Z E . A reevaluation of the carbon bond-Ⅳ photochemical mechanism:tests of past changes,current updates,and implications to scientific and regulatory modeling[D]. Carolina:University of North Carolina, 1999.
|
[16] |
ZAVERI R A, PETERS L K . A new lumped structure photochemical mechanism for large-scale applications[J]. Journal of Geophysical Research Atmospheres, 1999,104(23):30387-30415.
doi: 10.1029/1999JD900876 |
[17] |
向伟玲, 安俊岭, 王自发 , 等. 北京奥运会期间CBM-Z化学机制的模拟应用[J]. 气候与环境研究, 2010,15(5):551-559.
XIANG W L, AN J L, WANG Z F , et al. Application of CBM-Z chemical mechanism during Beijing Olympics[J]. Climatic and Environmental Research, 2010,15(5):551-559.
|
[18] |
YARWOOD G, RAO S, YOCKE M, et al. Updates to the carbon bond chemical mechanism:CB05 [C]//International Conference on Chemical Mechanisms.California:University of California, 2005: 2841-2842.
|
[19] |
YARWOOD G, RAO S, YOCKE M , et al. Updates to the carbon bond chemical mechanism:CBM-Ⅴ[R]. Washington DC:US EPA, 2005: 246.
|
[20] |
YARWOOD G, JUNG J, WHITTEN G Z, et al. Updates to the carbon bond mechanism for version 6(CB6) [C]//9th Annual CMAS Conference.California:University of California, 1997: 2841-2842.
|
[21] |
GREG Y, GARY Z, WHITTEN J , et al. Development,evaluation and testing of version 6 of the carbon bond chemical mechanism(CB6)[R]. Texas:Texas Commission on Environmental Quality, 2010.
|
[22] |
STOCKWELL W R, MIDDLETON P, CHANG J S , et al. The second generation regional acid deposition model chemical mechanism for regional air quality modeling[J]. Journal of Geophysical Research Atmospheres, 1990,951(10):16343-16367.
|
[23] |
STOCKWELL W R . A homogeneous gas phase mechanism for use in a regional acid deposition model[J]. Atmospheric Environment, 1986,20(8):1615-1632.
doi: 10.1016/0004-6981(86)90251-9 |
[24] |
CHANG J S, BROST R A , ISAKSEN I S A,et al.A three-dimensional eulerian acid deposition model:physical concepts and formulation[J]. Journal of Geophysical Research Atmospheres, 1987,92(12):14681-14700.
doi: 10.1029/JD092iD12p14681 |
[25] |
STOCKWELL W R, KIRCHNER F, KUHN M , et al. A new mechanism for regional atmospheric chemistry modeling[J]. Journal of Geophysical Research, 1997,102(22):25847-25879.
doi: 10.1029/97JD00849 |
[26] |
GOLIFF W S, STOCKWELL W R, LAWSON C V . The regional atmospheric chemistry mechanism,version 2[J]. Atmospheric Environment, 2013,68(1):174-185.
doi: 10.1016/j.atmosenv.2012.11.038 |
[27] |
CARTER W . The SAPRC-99 chemical mechanism and updated VOC reactivity scales[R]. California:California Air Resources Board, 2003.
|
[28] |
CARTER W P L . Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment[R]. California: California Air Resources Board, 1999.
|
[29] |
CARTER W P L . Implementation of the Saprc-99 chemical mechanism into the models-3 framework[R]. California:the United State Environmental Agency, 2000.
|
[30] |
CARTER W P L . Documentation for the saprc atmospheric photochemical mechanism preparation and emissions processing programs for implementation in airshed models[R]. California:California Air Resources Board, 1988.
|
[31] |
HARLEY R A, SAWYER R F . Updated photochemical modeling for California's south coast air basin:comparison of chemical mechanisms and motor vehicle emission inventories[J]. Environmental Science & Technology, 1997,31(10):2829-2839.
doi: 10.1021/es9700562 |
[32] |
CARTER W P L . Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 2010,44(40):5324-5335.
doi: 10.1016/j.atmosenv.2010.01.026 |
[33] |
AALTO T, LALLO M, HATAKKA J , et al. Atmospheric hydrogen variations and traffic emissions at an urban site in Finland[J]. Atmospheric Chemistry & Physics, 2009,9(19):7387-7396.
|
[34] |
BROWN S S, RYERSON T B, WOLLNY A G , et al. Variability in nocturnal nitrogen oxide processing and its role in regional air quality[J]. Science, 2006,311:67-70.
doi: 10.1126/science.1120120 pmid: 16400145 |
[35] |
BUTKOVSKAYA N I, KUKUI A, POUVESLE N A , et al. Rate constant and mechanism of the reaction of OH radicals with acetic acid in the temperature range of 229-300 K[J]. Iser Discussion Paper, 1997,13(6):1486-1492.
doi: 10.1021/jp048444v |
[36] |
TOMBROU M, BOSSIOLI E, PROTONOTARIOU A P , et al. Coupling GEOS-CHEM with a regional air pollution model for Greece[J]. Atmospheric Environment, 2009,43(31):4793-4804.
doi: 10.1016/j.atmosenv.2009.04.003 |
[37] |
ATKINSON R, BAULCH D L, COX R A , et al. Evaluated kinetic and photochemical data for atmospheric chemistry:supplement Ⅳ:IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry[J]. Atmospheric Environment Part A:General Topics, 1992,26(21):1187-1230.
doi: 10.1016/0960-1686(92)90383-V |
[38] |
BLOSS C, WAGNER V, JENKIN M E , et al. Development of a detailed chemical mechanism(MCMv3.1)for the atmospheric oxidation of aromatic hydrocarbons[J]. Atmospheric Chemistry & Physics, 2004,5(3):641-664.
|
[39] |
SINGH H B, KANAKIDOU M, CRUTZEN P J , et al. High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere[J]. Nature, 1995,378:50-54.
doi: 10.1038/378050a0 |
[40] |
PUN B K, SEIGNEUR C . Investigative modeling of new pathways for secondary organic aerosol formation[J]. Atmospheric Chemistry & Physics Discussions, 2007,7(9):2199-2216.
|
[41] |
LIN Y H, ZHANG H, PYE H O , et al. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides[J]. Pnas, 2013,110(17):6718-6723.
doi: 10.1073/pnas.1221150110 |
[42] |
SARWAR G, GANTT B, SCHWEDE D , et al. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere[J]. Environmental Science & Technology, 2015,49(15):9203-9211.
doi: 10.1021/acs.est.5b01657 pmid: 26151227 |
[43] |
YARWOOD G, GOOKYOUNG H , CARTER W P L,et al.Environmental chamber experiments to evaluate NOx sinks and recycling in atmospheric chemical mechanisms[R]. Texas:University of Texas, 2012.
|
[44] |
HILDEBRANDT R ,YARWOOD L H G.Interactions between organic aerosol and NOx:influence on oxidant production[R]. Texas:University of Texas, 2013.
|
[45] |
EMERY C J, JUNG B . Improvements to CAMx snow cover treatments and carbon bond chemical mechanism for winter ozone[R]. Salt Lake City:Ramboll Environ, 2015.
|
[46] |
JACOBS M I, BURKE W J, ELROD M J . Kinetics of the reactions of isoprene-derived hydroxynitrates:gas phase epoxide formation and solution phase hydrolysis[J]. Atmospheric Chemistry & Physics, 2014,14(8):8933-8946.
doi: 10.5194/acp-14-8933-2014 |
[47] |
CROUNSE J D, KNAP H C, ORNSO K B . Atmospheric fate of methacrolein:peroxy radical isomerization following addition of OH and O2[J]. The Journal of Physical Chemistry A, 2012,116(24):5756-5762.
doi: 10.1021/jp211560u pmid: 22452246 |
[48] |
王雪松, 李金龙 . 北京地区夏季PM10污染的数值模拟研究[J]. 北京大学学报(自然科学版), 2003,39(3):419-427.
WANG X S, LI J L . A numerical simulation study of PM10 pollution in Beijing during summer time[J]. Universitatis Pekinensis(Acta Scientiarum Naturalium), 2003,39(3):419-427.
|
[49] |
黄晓波, 殷晓鸿, 黄志炯 , 等. 不同模式对珠三角地区细颗粒物污染模拟效果对比评估[J]. 环境科学学报, 2016,36(10):3505-3514.
doi: 10.13671/j.hjkxxb.2016.0032 HUANG X B, YIN X H, HUANG Z J , et al. Evaluation and intercomparison of PM2.5 simulations by air quality models over Pearl River Delta[J]. Acta Scientiae Circumstantiae, 2016,36(10):3505-3514. doi: 10.13671/j.hjkxxb.2016.0032
|
[50] |
陈云波, 徐峻, 何友江 , 等. 北京市冬季典型重污染时段PM2.5污染来源模式解析[J]. 环境科学研究, 2016,29(5):627-636.
doi: 10.13198/j.issn.1001-6929.2016.05.03 CHEN Y B, XU J, HE Y J , et al. Model analytic research of typical heavy PM2.5 pollution periods in winter in Beijing[J]. Research of Environmental Sciences, 2016,29(5):627-636. doi: 10.13198/j.issn.1001-6929.2016.05.03
|
[51] |
ZHANG M G, XU Y F, UNO I , et al. A numerical study of tropospheric ozone in the springtime in East Asia[J]. Advances in Atmospheric Sciences, 2004,21(2):163-170.
doi: 10.1007/BF02915702 |
[52] |
刘峻峰, 李金龙, 白郁华 . 大气光化学烟雾反应机理比较:Ⅰ.O3和NOx的比较[J]. 环境化学, 2001,20(4):305-312.
doi: 10.3321/j.issn:0254-6108.2001.04.001 LIU J F, LI J L, BAI Y H . A comparison of atmospheric photochemical michanisms:Ⅰ.O3 and NOx[J]. Environmental Chemistry, 2001,20(4):305-312. doi: 10.3321/j.issn:0254-6108.2001.04.001
|
[53] |
KUHN M ,BUILTJES P J H,POPPE D,et al.Intercomparison of the gas-phase chemistry in several chemistry and transport models[J]. Atmospheric Environment, 1998,32(4):693-709.
doi: 10.1016/S1352-2310(97)00329-4 |
[54] |
LUECKEN D J, SARWAR S P, JANG C . Effects of using the CB05 vs SAPRC99 vs CB4 chemical mechanism on model predictions:ozone and gas-phase photochemical precursor concentrations[J]. Atmospheric Environment, 2008,42(23):5805-5820.
doi: 10.1016/j.atmosenv.2007.08.056 |
[55] |
SHEARER S M, HARLEY R A, JIN L , et al. Comparison of SAPRC99 and SAPRC07 mechanisms in photochemical modeling for Central California[J]. Atmospheric Environment, 2012,46(3):205-216.
doi: 10.1016/j.atmosenv.2011.09.079 |
[56] |
LI J, ZHANG H, YING Q . Comparison of the SAPRC07 and SAPRC99 photochemical mechanisms during a high ozone episode in Texas:differences in concentrations,OH budget and relative response factors[J]. Atmospheric Environment, 2012,54(5):25-35.
doi: 10.1016/j.atmosenv.2012.02.034 |
[57] |
FARAJI M, KIMURA Y, MCDONALD-BULLER E , et al. Comparison of the carbon bond and SAPRC photochemical mechanisms under conditions relevant to Southeast Texas[J]. Atmospheric Environment, 2008,42(23):5821-5836.
doi: 10.1016/j.atmosenv.2007.07.048 |
[58] |
KIM Y, SARTELET K, SEIGNEUR C . Comparison of two gas-phase chemical kinetic mechanisms of ozone formation over Europe[J]. Journal of Atmospheric Chemistry, 2009,62(2):89-119.
doi: 10.1007/s10874-009-9142-5 |
[59] |
KIM Y, SARTELET K, SEIGNEUR C . Formation of secondary aerosols over Europe:comparison of two gas-phase chemical mechanisms[J]. Atmospheric Chemistry & Physics, 2011,11(2):1457-1477.
|
[60] |
SIMONAITIS R, MEAGHER J F, BAILEY E M . Evaluation of the condensed carbon bond(CBM-Ⅳ) mechanism against smog chamber data at low VOC and NOx concentrations[J]. Atmospheric Environment, 1997,31(1):27-43.
doi: 10.1016/S1352-2310(96)00155-0 |