基于构造函数法的微藻比生长率因子建模及碳减排潜力研究

Modeling of specific growth rate factors of microalgae based on constructional function method and its carbon emission reduction potential

  • 摘要: 选取微藻比生长率(μ)的关键影响因子CO2浓度、光照强度和氮浓度(简称三因子),利用10种一元非线性模型,通过构造函数法构建并优化三因子与微藻μ之间的多元非线性回归模型;在满足显著性水平P<0.05、共线性诊断VIF<5的相关参数检验后,得出多元非线性回归方程的可决系数(R2)为0.917,说明该方程可用于微藻μ的有效预测。利用该方程定量预测三因子的变化对微藻μ的影响,结果表明:CO2浓度为5%~15%时,微藻μ较高;随光照强度〔45~480 μmol/(m2·s)〕和氮浓度(0~700 mg/L)的增加,微藻μ逐渐增大。根据回归模型预测微藻产量为7.2~100.2 kg/(m3·a),由此估算微藻固定CO2量为7.92~183.70 kg/(m3·a)。

     

    Abstract: Three key influencing factors of specific growth rate of microalgae, i.e. CO2 concentration, light intensity and nitrogen concentration were chosen, and ten kinds of univariate non-linear models used to construct a multivariate non-linear model between the three factors and the specific growth rate of microalgae by constructional function method. After the correlation parameter test of the significance P value less than 0.05 and the collinear diagnosis of VIF less than 5, the final determination coefficient (R2) of the multivariate nonlinear regression equation was 0.917, which could be used for the effective prediction of the growth rate of microalgae. On this basis, through the analysis of the effect of the equation on the three factors, it was concluded that when CO2 concentration was 5%-15%, the specific growth rate of microalgae was high, and the specific growth rate gradually increased with the increase of light intensity (45-480 μmol/(m2 ·s)) and nitrogen concentration (0-700 mg/L). The biomass yield of microalgae was predicted to be 7.2-100.2 kg/(m3 ·a) by regression model, and the absorption and fixation of CO2 by microalgae was estimated to be 7.92-183.70 kg/(m3·a).

     

/

返回文章
返回