铝污泥复合填料特性及在人工湿地中的应用

Characteristics of aluminum sludge composite filler and its application in constructed wetlands

  • 摘要: 利用铝污泥、钢渣和沸石制备了3种铝污泥复合填料——铝污泥-沸石、铝污泥-钢渣、铝污泥-沸石-钢渣,研究了其物理特性和对磷的等温吸附性能,并应用于人工湿地小试系统中,探讨其对湿地水质的净化效果。结果表明:相较铝污泥和传统湿地填料,3种复合填料具有较大的体积密度、孔隙率和比表面积;3种复合填料对磷的吸附效果存在较大差异,表现为铝污泥-钢渣>铝污泥-沸石>铝污泥-沸石-钢渣;3种复合填料对人工湿地进水中化学需氧量(CODCr)的去除率无显著差异,均为70%左右;对总磷(TP)、总氮(TN)、氨氮(NH3-N)的去除率差异较大,其中铝污泥-钢渣、铝污泥-沸石对TP去除率较高(93%以上),铝污泥-沸石、铝污泥-沸石-钢渣对TN和NH3-N去除率较高(TN高于65%,NH3-N高于77%);铝污泥-沸石复合填料对人工湿地污染物去除的综合效果最好,可使人工湿地出水水质达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准。

     

    Abstract: Three kinds of aluminum sludge composite fillers, including aluminum sludge-zeolite, aluminum sludge-steel slag, aluminum sludge-zeolite-steel slag, were prepared by using aluminum sludge, steel slag and zeolite. The physical properties and isothermal adsorption properties of phosphorus were studied. The composite fillers were used in a pilot-scale constructed wetland system, and their purification effects on wetland water quality were discussed. The results showed that the three kinds of composite fillers had higher volume density, porosity and specific surface area compared with aluminum sludge and conventional wetland fillers. The adsorption effect on phosphorus was quite different, with the order as follows: aluminum sludge-steel slag>aluminum sludge-zeolite> aluminum sludge-zeolite-steel slag. The removal rate of CODCr was about 70% in constructed wetland which revealed no significant differences. The removal rate of TP, TN and NH3-N were significantly different; the removal rate of aluminum sludge-steel slag and aluminum sludge-zeolite on TP was higher (above 93%), while that of aluminum sludge-zeolite, aluminum sludge-zeolite-steel slag on TN and NH3-N was higher (TN above 65% and NH3-N 77%). The aluminum sludge-zeolite composite filler had the best comprehensive removal effect on pollutants in constructed wetlands, and the effluent quality of constructed wetlands could reach level A of Pollutant Discharge Standard for Urban Sewage Treatment Plants (GB 18918-2002).

     

/

返回文章
返回