超声波控藻技术现状及研究进展

陈贺林, 李芸, 储昭升, 叶碧碧, 李国宏

陈贺林, 李芸, 储昭升, 叶碧碧, 李国宏. 超声波控藻技术现状及研究进展[J]. 环境工程技术学报, 2020, 10(1): 72-78. DOI: 10.12153/j.issn.1674-991X.20190032
引用本文: 陈贺林, 李芸, 储昭升, 叶碧碧, 李国宏. 超声波控藻技术现状及研究进展[J]. 环境工程技术学报, 2020, 10(1): 72-78. DOI: 10.12153/j.issn.1674-991X.20190032
CHEN Helin, LI Yun, CHU Zhaosheng, YE Bibi, LI Guohong. Present situation and research progress of ultrasonic algae control technology[J]. Journal of Environmental Engineering Technology, 2020, 10(1): 72-78. DOI: 10.12153/j.issn.1674-991X.20190032
Citation: CHEN Helin, LI Yun, CHU Zhaosheng, YE Bibi, LI Guohong. Present situation and research progress of ultrasonic algae control technology[J]. Journal of Environmental Engineering Technology, 2020, 10(1): 72-78. DOI: 10.12153/j.issn.1674-991X.20190032

超声波控藻技术现状及研究进展

详细信息
    作者简介:

    陈贺林(1993—),男,硕士研究生,研究方向为蓝藻水华控制, 1824631844@qq.com

    通讯作者:

    储昭升 E-mail: chuzs@craes.org.cn

  • 中图分类号: X524

Present situation and research progress of ultrasonic algae control technology

More Information
    Corresponding author:

    CHU Zhaosheng: Zhaosheng CHU E-mail: chuzs@craes.org.cn

  • 摘要: 超声波控藻技术具有设备简单、经济性好、无二次污染及管理方便等优点,具有很大的发展潜力和广阔的应用前景。综述了超声波控藻技术的基本原理、控藻效果影响因素、超声波对水生态的影响及超声波与其他技术联用的控藻效果。采用超声波技术控藻时,超声波强度越大,耗能就越高,经济性也越差,且超声波强度过高会抑制水生生物的生长;从控藻效果、安全性和经济性等方面综合考虑,低强度超声波更适用于蓝藻水华控制。超声波与其他控藻技术联用可以提高控藻效率,低强度超声波与其他技术联用将是今后超声波控藻技术发展的方向。
    Abstract: Ultrasonic algae control technology has great development potential and broad application prospects with the advantages of simple equipment, economical efficiency, without secondary pollution and simple management. The basic principles of ultrasonic algae control technology, the factors affecting the efficiency of algae control by ultrasound, the impact of ultrasound on water ecological environment and the algae removal efficiency of ultrasound technology combined with other technologies were reviewed. The results showed that in the case of ultrasonic algae control, the higher the intensity, the greater the energy consumption and the more the cost. Moreover, the excessive power could inhibit the growth of aquatic organisms. Considering the removal efficiency, safety and economy of algae control, the low-power ultrasonic technology was more suitable for cyanobacterial bloom control. At the same time, the combination of ultrasound and other algae control technologies could improve the efficiency of algae removal, which would be a development direction of ultrasonic control algae technology in the future.
  • [1] 金相灿 . 中国湖泊环境[M]. 北京: 海洋出版社, 1995.
    [2]

    REYNOLDS C S, WALSBY A E . Water-blooms[J]. Biological Reviews, 1975,50(4):437-481.

    [3]

    PERRI K A, SULLIVAN J M, BOYER G L . Harmful algal blooms in Sodus Bay,Lake Ontario:a comparison of nutrients,marina presence,and cyanobacterial toxins[J]. Journal of Great Lakes Research, 2015,41(2):326-337.

    [4]

    SOBCZYNSKI T, JONIAK T . The variability and stability of water chemistry in a deep temperate lake: results of long-term study of eutrophication[J]. Polish Journal of Environmental Studies, 2013,22(1):227-237.

    [5] 邴旭文, 陈家长 . 浮床无土栽培植物控制池塘富营养化水质[J]. 湛江海洋大学学报, 2001,21(3):29-33.

    BING X W, CHEN J C . The control of eutrophic water in ponds by floating-bed soilless culture of plants[J]. Journal of Zhanjiang Ocean University, 2001,21(3):29-33.

    [6] 刘建康, 谢平 . 用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J]. 生态科学, 2003,22(3):193-198.

    LIU J K, XIE P . Direct control of microcystis bloom through the use of planktivorous carp-closure experiments and lake fishery practice[J]. Ecological Science, 2003,22(3):193-198.

    [7]

    JACOBY J, GIBBONS H, STOOPS K , et al. Response of a shallow,polymictic lake to buffered alum treatment[J]. Lake & Reservoir Management, 1994,10(2):103-112.

    [8] 缪柳, 洪俊明, 林冰 . 络合硫酸铜除藻剂应急治理水华对水质及鱼类的影响[J]. 生态与农村环境学报, 2011,27(5):63-66.

    MIAO L, HONG J M, LIN B . Effects on water quality and fishes of copper sulfate complex applied as algaecide for emergency control of algae bloom[J]. Journal of Ecology and Rural Environment, 2011,27(5):63-66.

    [9] 申开旭 . 云贵高原昭通渔洞水库控藻技术初探[J]. 水利技术监督, 2015,23(6):53-56.
    [10]

    HOSPER H, MEYER M L . Control of phosphorus loading and flushing as restoration methods for Lake Veluwe,the Netherlands[J]. Hydrobiological Bulletin, 1986,20(1/2):183-194.

    [11] 周起超, 宋立荣, 李林 . 遮光对滇池春季藻类水华的影响[J]. 环境科学与技术, 2015,38(9):53-59.

    ZHOU Q C, SONG L R, LI L . Effect of shading on the algal blooms during spring in Lake Dianchi,China[J]. Environmental Science & Technology, 2015,38(9):53-59.

    [12]

    RAJASEKHAR P, FAN L, NGUYEN T , et al. A review of the use of sonication to control cyanobacterial blooms[J]. Water Research, 2012,46(14):4319-4329.

    [13]

    CHEN B, HUANG J, WANG J , et al. Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum[J]. Colloids and Surfaces B:Biointerfaces, 2008,61(1):88-92.

    [14]

    PARK J, CHURCH J, SON Y , et al. Recent advances in ultrasonic treatment:challenges and field applications for controlling harmful algal blooms (HABs)[J]. Ultrasonics Sonochemistry, 2017,38:326-334.

    [15]

    GOGATE P R, KABADI A M . A review of applications of cavitation in biochemical engineering/biotechnology[J]. Biochemical Engineering Journal, 2009,44(1):60-72.

    [16]

    BOLLAPRAGADA S, SODHI M M S .Ultrasonic treatment for microbiological control of water systems[J]. Ultrasonics Sonochemistry, 2010,17(6):1041-1048.

    [17]

    ROKHINA E V, PIET L, JURATE V . Low-frequency ultrasound in biotechnology:state of the art[J]. Trends in Biotechnology, 2009,27(5):298-306.

    [18]

    ALFONSO R M, SANDY D, PETER H , et al. Quantification of the ultrasound induced sedimentation of Microcystis aeruginosa[J]. Ultrasonics Sonochemistry, 2014,21(4):1299-1304.

    [19]

    SUSLICK K S . Sonochemistry[J]. Science, 1990,247:1439-1445.

    [20]

    KHANAL S K, GREWELL D, SUNG S , et al. Ultrasound applications in wastewater sludge pretreatment:a review[J]. Critical Reviews in Environmental Science and Technology, 2007,37(4):277-313.

    [21]

    LEHMANN H , JOSTM.Kinetics of the assembly of gas vacuoles in the blue-green alga Microcystis aeruginosa Kuetz. emend. Elekin.[J]. Archiv für Mikrobiologie, 1971,79(1):59-68.

    [22]

    TANG J W, WU Q Y, HAO H W , et al. Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium[J]. Colloids and Surfaces B:Biointerfaces, 2004,36(2):115-121.

    [23] 陈矜, 陈伟中 . 超声波对浮游蓝藻的作用[C]//中国声学学会功率超声分会2009年学术年会论文集.广州:中国声学学会功率超声分会, 2009.
    [24]

    ENVI C, JAMES R, MUTHUPANDIAN A , et al. Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies[J]. Journal of Physical Chemistry B, 2006,110(27):13656-13660.

    [25] 袁易全 . 近代超声原理及应用[M]. 南京: 南京大学出版社, 1996.
    [26] 申勇立, 郝金库, 曹映玉 , 等. 鸟嘌呤受羟基自由基损伤反应机理的量子化学研究[J]. 高等学校化学学报, 2010,31(2):379-382.

    SHEN Y L, HAO J K, CAO Y Y , et al. Quantum chemical studies on the damage mechanism of hydroxyl radical to guanine[J]. Chemical Journal of Chinese Universities, 2010,31(2):379-382.

    [27]

    SONG W H, TESHIBA T, REIN K , et al. Ultrasonically induced degradation and detoxification of microcystin-LR(cyanobacterial toxin)[J]. Environmental Science & Technology, 2005,39(16):6300-6305.

    [28]

    GUO Z B, ZHENG Z, ZHENG S R , et al. Effect of various sono-oxidation parameters on the removal of aqueous 2,4-dinitrophenol[J]. Ultrasonics Sonochemistry, 2005,12(6):461-465.

    [29]

    LEE T J, NAKANO K, MATSUMARA M . Ultrasonic irradiation for blue-green algae bloom control[J]. Environmental Technology Letters, 2001,22(4):383-390.

    [30]

    JOYCE E M, WU X, MASON T J . Effect of ultrasonic frequency and power on algae suspensions[J]. Journal of Environmental Science and Health,Part A:Toxic/Hazardous Substances & Environmental Engineering, 2010,45(7):863-866.

    [31]

    WU X, MASON T . Evaluation of power ultrasonic effects on algae cells at a small pilot scale[J]. Water, 2017,9(7):470.

    [32]

    ZHANG G M, ZHANG P Y, WANG B , et al. Ultrasonic frequency effects on the removal of Microcystis aeruginosa[J]. Ultrasonics Sonochemistry, 2006,13(5):446-450.

    [33]

    HAO H W, WU M S, CHEN Y F , et al. Cyanobacterial bloom control by ultrasonic irradiation at 20 kHz and 1.7 MHz[J]. Journal of Environmental Science and Health,Part A:Toxic/Hazardous Substances & Environmental Engineering, 2004,39(6):1435-1446.

    [34]

    SRISUKSOMWONG P, WHANGCHAI N, YAGITA Y , et al. Effects of ultrasonic irradiation on degradation of microcystin in fish ponds[J]. International Journal of Agriculture and Biology, 2011,13(1):67-70.

    [35]

    YAMAMOTO K, KING P M, WU X G , et al. Effect of ultrasonic frequency and power on the disruption of algal cells[J]. Ultrasonics Sonochemistry, 2015,24:165-171.

    [36] 黄浙丰 . 基于时序神经网络的藻类水华预测模型研究[D]. 杭州:浙江大学, 2011.
    [37] 潘彩萍, 张光明, 王波 . 超声除藻动力学研究[J]. 净水技术, 2006,25(6):31-33.

    PAN C P, ZHANG G M, WANG B . Kineitc study on ultrasonic algae removal[J]. Water Purification Technology, 2006,25(6):31-33.

    [38]

    TANG J W, WU Q Y, HAO H W , et al. Growth inhibition of the cyanobacterium Spirulina(Arthrospira) platensis by 1.7 MHz ultrasonic irradiation[J]. Journal of Applied Phycology, 2003,15(1):37-43.

    [39]

    AHN C Y, JOUNG S H, CHOI A , et al. Selective control of cyanobacteria in eutrophic pond by a combined device of ultrasonication and water pumps[J]. Environmental Technology Letters, 2007,28(4):371-379.

    [40] 舒天阁, 苑宝玲, 王少蓉 . 低功率超声波去除铜绿微囊藻技术[J]. 华侨大学学报(自然科学版), 2008,29(1):72-75.

    SHU T G, YUAN B L, WANG S R . Studies on the removal of Mircocystis aeruginosa by low-power ultrasonic[J]. Journal of Huaqiao University(Natural Science), 2008,29(1):72-75.

    [41] 储昭升, 庞燕, 郑朔芳 , 等. 超声波控藻及对水生生态安全的影响[J]. 环境科学学报, 2008,28(7):1335-1339.

    CHU Z S, PANG Y, ZHENG S F , et al. Algal control by ultrasonic radiation and its risks to the aquatic environment[J]. Acta Scientiae Circumstantiae, 2008,28(7):1335-1339.

    [42]

    ZHOU Y C, HUANG H, WANG J , et al. Vaccination of the grouper,Epinephalus awoara,against vibriosis using the ultrasonic technique[J]. Aquaculture, 2002,203(3):229-238.

    [43] 方金, 钱卫国, 李伟纯 , 等. 超声波对江黄颡幼鱼生长的影响[J]. 上海水产大学学报, 2008,17(2):210-214.

    FANG J, QIAN W G, LI W C , et al. The effect of ultrasonic wave on the growth of Pseudobagrus Vachelli[J]. Journal of Shanghai Fisheries University, 2008,17(2):210-214.

    [44] 方金, 钱卫国, 周应祺 . 超声波对尼罗罗非鱼幼鱼生长的影响[J]. 大连水产大学学报,2009(增刊1):147-152.

    FANG J, QIAN W G, ZHOU Y Q . The effect of ultrasonic wave on growth in Nile tilapia[J]. Journal of Dalian Fisheries University,2009(Suppl 1):147-152.

    [45]

    CHEMAT F, TEUNISSEN P G, CHEMAT S , et al. Sono-oxidation treatment of humic substances in drinking water[J]. Ultrasonics Sonochemistry, 2001,8(3):247-250.

    [46]

    PETRIER C, DAVID B, LAGUIAN S . Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution:preliminary results[J]. Chemosphere, 1996,32(9):1709-1718.

    [47]

    AHN C Y, PARK M H, JOUNG S H , et al. Growth inhibition of Cyanobacteria by ultrasonic radiation:laboratory and enclosure studies[J]. Environmental Science & Technology, 2003,37(13):3031-3037.

    [48]

    LI J P, HAI L, CHEN S , et al. Study on the removal of algae from lake water and its attendant water quality changes using ultrasound[J]. Desalination and Water Treatment:Science and Engineering, 2014,52(25/26/27):4762-4771.

    [49] 崔竣岭, 吴竹林 . 超声波技术在防治人工湖水藻中的应用[J]. 宁夏农林科技,2009(2):41.
    [50] 丁永良, 卢守珍, 郭磊 , 等. 超声波水域灭藻净水装置在上海曲阳公园景观湖的应用[J]. 上海水务,2006(4):15-18.

    DING Y L, LU S Z, GUO L , et al. European union ultrasonic water-purifier for eliminating algae applying to the landscape lake in Quyang Park of Shanghai[J]. Shanghai Water,2006(4):15-18.

    [51] 闫莉 . 超声共振技术在水库藻类抑制中的应用初探[J]. 人民珠江, 2015,36(4):88-90.
    [52] 丁暘, 浦跃朴, 尹立红 , 等. 超声除藻的参数优化及其在太湖除藻中的应用[J]. 东南大学学报(自然科学版), 2009,39(2):354-358.

    DING Y, PU Y P, YIN L H , et al. Parameters optimization of ultrasound algae removal technology and bloom removal study in Taihu Lake[J]. Journal of Southeast University(Natural Science Edition), 2009,39(2):354-358.

    [53] 韩景明 . 澎溪河水环境及超声波除(抑)藻技术研究[D]. 重庆:重庆大学, 2011.
    [54] 周学军, 周民, 周德领 .智能化超声波除藻装置:205933308U[P]. 2017 -02-08.
    [55]

    NAKANO K, LEE T J, MATSUMURA M . In situ algal bloom control by the integration of ultrasonic radiation and jet circulation to flushing[J]. Environmental Science & Technology, 2001,35(24):4941-4946.

    [56]

    WEAVERS L K, HOFFMANN M R . Sonolytic decomposition of ozone in aqueous solution mass:transfer effects[J]. Environmental Science & Technology, 1998,32(24):3941-3947.

    [57] 屠清瑛, 章永泰, 杨贤智 . 北京什刹海生态修复试验工程[J]. 湖泊科学, 2004,16(1):61-67.

    TU Q Y, ZHANG Y T, YANG X Z . Approaches to the ecological recovery engineering in Lake Shishahai,Beijing[J]. Journal of Lake Sciences, 2004,16(1):61-67

    [58] 陈杰, 王波, 张光明 , 等. 超声强化混凝去除蓝藻实验研究[J]. 环境工程学报, 2007,1(3):66-69.

    CHEN J, WANG B, ZHANG G M , et al. Enhancement of ultrasonic coagulation on removal of algae[J]. Chinese Journal of Environmental Engineering, 2007,1(3):66-69.

    [59]

    LIANG H, NAN J, HE W J , et al. Algae removal by ultrasonic irradiation-coagulation[J]. Desalination, 2009,239(1):191-197.

    [60] 王利平, 杨显财, 段松林 , 等. 超声波/改性粘土工艺去除人工水体中的蓝藻[J]. 中国给水排水, 2008,24(19):44-46.

    WANG L P, YANG X C, DUAN S L , et al. Ultrasonic/modified clay process for removal of blue algae from artificial waters[J]. China Water & Wastewater, 2008,24(19):44-46.

    [61] 陆贻超, 王国祥, 李仁辉 . 超声波和改性粘土集成技术在去除蓝藻水华上的应用[J]. 湖泊科学, 2010,22(3):421-429.

    LU Y C, WANG G X, LI R H . Using the integrated technique of ultrasonic and modified-clay to remove algal blooms[J]. Journal of Lake Sciences, 2010,22(3):421-429.

  • 期刊类型引用(16)

    1. 蔡启佳,马千里,苟婷,梁荣昌,陈思莉,黄大伟,赵瑞,冯雁辉,姚玲爱. 湖库型水源地蓝藻水华应急处置技术研究进展. 中国环境科学. 2025(01): 390-405 . 百度学术
    2. 许正泓,徐民俊,付京花. 蓝藻水华防控治理方法研究进展. 水产学杂志. 2024(01): 113-118 . 百度学术
    3. 曹晶,袁静,赵丽,潘正国,闫国凯,高思佳,储昭升,郑丙辉. 湖库蓝藻水华控制技术发展、应用及展望. 环境工程技术学报. 2024(02): 487-500 . 本站查看
    4. 杨燕,孙锟焜,谢艳萍,马燕天,张赫. 溶藻菌治理藻华的研究进展. 渔业研究. 2024(04): 413-424 . 百度学术
    5. 江雨萌,张稳乐,罗朝晖,李辉信,陈丹. 萜类物质抑藻效应及富萜植物共培养抑藻研究. 中国环境科学. 2024(10): 5788-5800 . 百度学术
    6. 钟佳峻,赵倩名,何培民,邵留. 针对刚毛藻的植物源抑制剂的筛选及工艺优化. 上海海洋大学学报. 2023(01): 234-243 . 百度学术
    7. 陈昕,胡胜华,陈晓飞,赵凌云,孙紫童,敖鸿毅,吴卫菊,吴辰熙. 蓝藻水华应急处置方法与技术研究进展. 环境科学与技术. 2023(05): 108-116 . 百度学术
    8. 邹伦妃,肖琛,张启伟,郑琦. 关于减少武汉市饮用水中藻源类消毒副产物的举措探讨. 江汉大学学报(自然科学版). 2023(05): 41-46 . 百度学术
    9. 张海涵,王娜,宗容容,黄廷林,苗雨甜,史印杰,马曼立,刘祥,齐笑妍. 水动力条件对藻类生理生态学影响的研究进展. 环境科学研究. 2022(01): 181-190 . 百度学术
    10. 史小丽,杨瑾晟,陈开宁,张民,阳振,于洋. 湖泊蓝藻水华防控方法综述. 湖泊科学. 2022(02): 349-375 . 百度学术
    11. 王飞,潘灵婷,钱敏桦,蔡汝倩,林威,洪斌鑫,杨佳豪,李靓,李登峰,童贻刚. 新型淡水微囊藻噬藻体vB_MweS-yong2的分离与基因组分析. 微生物学报. 2022(10): 3784-3800 . 百度学术
    12. 杨宗佳,付京花. 蓝藻水华防控方法. 中南农业科技. 2022(02): 151-153 . 百度学术
    13. 叶晶,赵剑,周林,彭香玉,肖磊. 湖泊蓝藻水华治理技术研究进展. 绿色科技. 2022(24): 194-199 . 百度学术
    14. 邵泽宇,陆开宏,谢吉国,杨显祥,董小敬,杜雪地,王曙光,吴飞. 低强度超声波对铜绿微囊藻的抑制及对渔业环境安全性影响的研究. 水产学杂志. 2021(01): 68-72 . 百度学术
    15. 刘佩蕊,洪喻,谢兴. 藻华防控方法及灭活与捕获新技术研究进展. 环境科学与技术. 2021(02): 171-185 . 百度学术
    16. 李龙旭,张真真,杨玉萍,孔进. 富营养化水体中抑藻技术的研究进展. 科技风. 2021(15): 139-140 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  1148
  • HTML全文浏览量:  407
  • PDF下载量:  263
  • 被引次数: 30
出版历程
  • 收稿日期:  2019-02-26
  • 发布日期:  2020-01-19

目录

    /

    返回文章
    返回