自洁式餐饮油烟颗粒物浓度测量管段设计及影响因素分析
Design of self-cleaning pipe segment for concentration measurement of cooking fume particulate matter and analysis of influencing factors
-
摘要: 针对光散射法餐饮油烟颗粒物浓度在线测量,考虑到测量中系统易受油烟污染的问题,以截面尺寸450 mm×400 mm的矩形油烟管段为例,设计了自洁式餐饮油烟颗粒物浓度测量管段,利用文丘里效应引射洁净空气以保护光学元件。采用流体力学(CFD)方法比较分析线性、维式、双三次曲线和五次曲线4种型面测量管段的压力分布特征和喉部压力水平,发现相同工况下维式型面测量管段压力损失最小,比线性和五次曲线型面测量管段分别降低41%和35%。基于维式型面搭建试验测量系统,利用不同工况下的喉部压力试验数据进行仿真模型的验证,比较测量区域苯浓度的实测值和模拟值。结果表明:测量元件附近压力实测值和模拟值误差在20%以内;最低设计流量下,喉部负压满足要求;最佳测量位置为距离两侧壁面20 mm之间的主流区域。Abstract: For the on-line concentration measurement of cooking fume particles with light scattering method, considering the vulnerability of oil fume pollution on the measurement system, a rectangular pipe with the across-section size of 450 mm×400 mm was taken as an example to design a self-cleaning cooking fume particulate matter concentration measurement section by ejecting clean air to protect the optical components with Venturi effect. By using computational fluid dynamics (CFD) method, the pressure distribution characteristics and throat negative pressure levels of four types of measuring sections including linear, VitoHinsch, bicubic and quintic curves were compared and analyzed. It was found that the pressure loss of the VitoHinsch section was the smallest, which was 41% and 35% lower than that of the linear and quintic curve under the same conditions. Experimental measurement system was constructed based on the VitoHinsch profile, and the experimental data of the throat pressure under different working conditions were used to verify the simulation model. The experimental and simulation data of the composition distribution in the pipe segment were compared. The results showed that the error between experiment data and simulation data of the pressure near the measuring element was within 20%. Under the lowest flow rate, the throat negative pressure met the requirements,and the best measurement position was the mainstream area 20 mm away from the wall.