巢湖沉积物中有机磷的生物可利用性研究

Bioavailability of organic phosphorus in Lake Chaohu sediments

  • 摘要: 沉积物中有机磷通过转化为无机磷被藻类利用,加速水体富营养化进程。采集巢湖沉积物柱状样品,用Ivanoff连续提取法分级提取不同深度沉积物中有机磷,测定了沉积物中碱性磷酸酶的活性,并研究了碱性磷酸酶对沉积物中碳酸氢钠提取态有机磷(NaHCO3-Po)、盐酸提取态有机磷(HCl-Po)、氢氧化钠提取态有机磷(NaOH-Po)的水解效果。结果表明:东半湖区C14采样点的有机磷浓度高于西半湖区C4采样点,C4采样点NaOH-Po、HCl-Po、NaHCO3-Po和残渣态-Po浓度占总有机磷浓度的比例分别为41.70%、12.82%、11.05%和2.22%,C14采样点分别为43.75%、19.00%、6.12%和 4.22%,2个采样点不同形态有机磷浓度均为NaOH-Po>HCl-Po>NaHCO3-Po>残渣态-Po;C4采样点的碱性磷酸酶活性高于C14采样点,这与西半湖区富营养化程度较高有关;NaHCO3-Po、HCl-Po、NaOH-Po均能被碱性磷酸酶水解,C4和C14采样点表层沉积物中各形态有机磷的水解比例显著高于下层沉积物,说明人类活动产生的有机磷生物可利用性较高,其中,以简单小分子化合物为主的NaHCO3-Po被水解的比例最高,为65.78%~69.47%。

     

    Abstract: Organic phosphorus in sediments can be converted into inorganic phosphorus, which may accelerate lake eutrophication process. Sectional sediment samples were collected in Lake Chaohu, organic phosphorus in sediments were extracted by Ivanoff method, and alkaline phosphatase activity in sediments were determined. The hydrolysis effects of alkaline phosphatase on NaHCO3 extracted Po (NaHCO3-Po), HCl extracted Po (HCl-Po) and NaOH extracted Po (NaOH-Po) in sediments were studied. The results indicated that Po content at C14 sampling station in the eastern half of the lake was higher than that at C4 sampling station in the western half of the lake. The proportion of NaOH-Po, HCl-Po, NaHCO3-Po and Residual-Po in total organic phosphorus was 41.70%, 12.82%, 11.05% and 2.22%, respectively at C4 sampling station, 43.75%, 19.00%, 6.12% and 4.22%, respectively at C4 sampling station, and the concentrations of different forms of organic phosphorus were in the order of NaOH-Po>HCl-Po>NaHCO3-Po>Residual-Po. The alkaline phosphatase activity at C4 sampling station was higher than that at C14 sampling station due to high eutrophication level in the western half of Lake Chaohu. NaHCO3-Po, HCl-Po and NaOH-Po could be hydrolyzed by alkaline phosphatase, and the hydrolysis contents of various organic phosphorus in surface layers at C4 and C14 stations were significantly higher than those in deep layers, indicating that the bioavailability of organic phosphorus produced by human activities were higher. Indeed, the hydrolysis ratio of NaHCO3-Po was highest with 65.78%-69.47% averaged values due to its simple and small molecular compounds.

     

/

返回文章
返回