电化学技术对海水养殖尾水中无机氮的去除效果

Study on the effect of electrochemical technology on removing inorganic nitrogen from tail water of mariculture

  • 摘要: 为研究电化学技术对海水养殖尾水中氨氮和亚硝酸盐的去除作用,以天津市杨家泊镇某海水养殖工厂排放的养殖尾水为研究对象,选用DSA(dimensionally stable anodes)电极、间歇流的处理方式,考察电压、电极板间距、电化学处理时间对养殖尾水中氨氮和亚硝酸盐去除率的影响,并进行了能耗分析。结果表明:在电极板间距为2 cm,电压为3 V、电化学处理时间为5 min时,氨氮去除率达96.0%,此时能耗仅为0.79 kW·h/g;电极板间距为3 cm,电压为3 V,电化学处理时间为7 min时,亚硝酸盐去除率最高,为98.9%;去除亚硝酸盐的最低能耗为0.032 kW·h/g,此时去除率为75.2%;27组试验组中有14组经电化学处理后的养殖尾水总无机氮浓度达到SC/T 9103—2007《海水养殖水排放要求》一级排放标准。电化学技术对氨氮和亚硝酸盐均有很好的去除作用,不同试验条件下氨氮和亚硝酸盐去除率均较高,且能耗较低。

     

    Abstract: In order to study the electrochemical technology on removing ammonia nitrogen and nitrite in mariculture tail water, the tail water from a mariculture plant in Yangjiabo Town in Tianjin was chosen as the research object. The effects of voltage, electrode plate spacing and electrochemical treatment time on the removal rate of ammonia nitrogen and nitrite were investigated by using dimensionally stable anodes (DSA) electrode and intermittent flow treatment mode, and the energy consumption was analyzed. The results showed that the ammonia nitrogen removal rate reached 96.0% and the energy consumption was only 0.079 kW·h/g when the electrode plate spacing was 2 cm, the voltage was 3 V and the electrochemical treatment time was 5 min. Under the condition of electrode plate spacing of 3 cm, voltage of 3 V and electrochemical treatment time of 7 min, the removal rate of nitrite was the highest, reaching 98.9%. The minimum energy consumption for nitrite removal was 0.032 kW·h/g, and the removal rate was 75.2%. The total inorganic nitrogen in the tail water reached the first-level discharge standard of Water Drainage Standard for Sea water Mariculture (SC/T 9103-2007) after electrochemical treatment in 14 groups in the designed experiment. In conclusion, the electrochemical technology had a good removal effect on ammonia nitrogen and nitrite, and the removal rate of ammonia nitrogen and nitrite was high under different test conditions, and the energy consumption was low.

     

/

返回文章
返回