水力负荷与水流方式对新型复合垂直流人工湿地净化效果的影响

Effects of hydraulic load and flow mode on the removal of pollutants in new-type integrated vertical flow constructed wetland

  • 摘要: 以模拟城镇污水处理厂GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准出水为湿地进水,在间歇运行方式下,考察水力负荷和水流方式及有、无植物种植对新型复合垂直流人工湿地模拟系统去除污染物效果的影响。结果表明:新型复合垂直流人工湿地模拟系统的最佳运行水力负荷为0.36 m3/(m2·d),最佳水流方式为垂直上行式(UVCW),此时出水总磷(TP)浓度和化学需氧量(COD)均达到GB 3838—2002《地表水环境质量标准》的Ⅳ类水质标准;有植物(芦苇+水葫芦)种植时,湿地模拟系统对污染物去除效果明显,总氮(TN)、TP、氨氮(NH4+-N)和COD的去除率分别达72.20%、72.00%、81.13%和75.01%,其中出水TP、NH4+-N浓度与COD达到Ⅳ类水质标准。新型复合垂直流人工湿地应用时,建议水力负荷设为0.36 m3/(m2·d),选择UVCW水流方式,并搭配种植植物,以保证湿地的稳定运行和对污染物较好的去除效果。

     

    Abstract: The simulated Grade I (A) effluent based on the Standard of Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) was used as the inlet of wetland. Under the intermittent operation, the effects of hydraulic load and water flow mode on the pollutants removal of the new-type integrated vertical flow constructed wetland simulation system were investigated. The effect of plant planting on pollutants removal was also investigated. The results showed that the optimal operation hydraulic load of the new-type integrated vertical flow constructed wetland simulation system was 0.36 m3/(m2·d), the best way was vertical upward flow type (UVCW), and the effluent concentrations of total phosphorus (TP) and chemical oxygen demand (COD) met Grade Ⅳ requirements of Environmental Quality Standard for Surface Water (GB 3838-2002). With plants planting of Phragmites australis and water hyacinth, the constructed wetland had a significant effect on pollutants removal. The removal rates of total nitrogen (TN), TP, ammonia nitrogen (NH4+-N) and COD could reach 72.20%, 72.00%, 81.13% and 75.01%, respectively, and the effluent TP, NH4+-N and COD concentrations achieved Grade Ⅳ water quality standards. When the new-type integrated vertical flow constructed wetland was applied, it was recommended to set the hydraulic load to 0.36 m3/(m2 ·d), choose UVCW flow mode, and implement complex planting to ensure the stable operation of the wetland and high removal effect of pollutants.

     

/

返回文章
返回