北京市怀柔区大气污染物浓度变化规律及与其他要素的相关性

The variation law of air pollutant concentrations and their correlations with other factors in Huairou District, Beijing City

  • 摘要: 对2019年北京市怀柔区SO2、NOx、CO和O3 4种污染物5 min浓度数据及PM10和PM2.5浓度的监测结果进行整点数据、日数据、逐月日数据、小时数据、日最大8 h平均O3数据、月数据、各季节小时数据、各季节日数据统计,分析PM2.5浓度、气象条件及降水等因素对大气污染物浓度的影响。结果表明:大气污染物中O3浓度超标天数最多,其次是PM2.5、PM10。大气污染物浓度日变化、季节变化特征明显,SO2、NOx浓度的变化特征相似,最大值出现在冬季,春季和秋季次之,最小值出现在夏季,其中1月污染最严重。O3有着相反的季节变化特征,最高值出现在夏季,最低值出现在冬季。PM10和PM2.5浓度最高值出现在3月(春季),其次是冬季,秋季次之,最小值出现在夏季。降水对SO2和NOx的去除效果不明显,小雨天气时,容易出现大气污染物浓度增长的现象。总体上可以看出,降水对NOx去除比SO2更有效,对大粒径颗粒物的去除量大于小粒径颗粒物。本研究可为怀柔区相关部门制定减少污染物排放,控制城市大气颗粒物浓度,提高城市环境空气质量等措施提供数据及理论支持。

     

    Abstract: On the basis of 5-minute data of air pollutants SO2, NOx, CO and O3and the monitoring results of PM10 and PM2.5 in Huairou District in 2019, the on hour data, daily data, daily data of each month, hourly data, daily maximum 8-hour average O3 data, monthly data, seasonal hourly data and daily data of each season were collected. Furthermore, the influences of various factors including PM 2.5, meteorological conditions and precipitation on the concentration of air pollutants were analyzed, so as to provide data and theoretical support for relevant departments in Huairou District to formulate measures of reducing pollutant emissions, controlling urban air particulate matters and improving urban ambient air quality. The results were as follows: among the air pollutants, O3had the maximum over-standad days, followed by PM2.5, PM10. The daily and seasonal variation characteristics of air pollutants were obvious. The characteristics of SO2, and NOx were similar, with the maximum concentration appearing in winter, the second in spring and autumn, and the minimum in summer. The pollution in January was the most serious. O3had the opposite seasonal variation characteristics, with the highest value appeared in summer and the lowest value appeared in winter. The highest concentrations of PM10 and PM2.5 appeared in March (spring), followed by winter and autumn, and the lowest concentrations appeared in summer. The effect of precipitation on the removal of SO2 and NOx was not obvious, and it was easy to increase the concentration of air pollutants on light rainy days. On the whole, the precipitation was more efficient for the removal of NO x than SO2, and the removal amount of large-size particles was more than that of small-size particles.

     

/

返回文章
返回