辽河保护区土壤保持功能时空变化及其影响因素分析

Spatial and temporal variation of soil conservation function and its in fluencing factors in Liaohe Conservation Area

  • 摘要: 土壤保持是生态系统提供的调节服务之一,在维持生态安全等方面发挥着重要作用。以辽河保护区为研究对象,基于中国土壤流失方程(CSLE)模型和地理探测器等方法,开展土壤保持功能时空变化及影响因素分析。结果表明:2010—2018年辽河保护区土壤以微度和轻度侵蚀为主,土壤侵蚀量呈降低趋势,土壤侵蚀严重的区域主要位于河流两侧及下段;土壤保持功能不断增强,土壤保持量较高的区域集中在河流上段和中段;土壤保持功能表现出随降水量、高程增加先减少后增加,随坡度和植被覆盖度增加而增加的趋势,在林地—耕地—草地—灌木林梯度上呈递减趋势;土地利用类型是影响辽河保护区土壤保持格局的主导因素;土地利用类型为耕地,降水量为657~735 mm,坡度为35°~68°,高程为-73~-26 m,植被覆盖度为0~0.3时,土壤保持能力最低,坡度和土地利用类型的交互作用对土壤保持能力变化的解释力最强。

     

    Abstract: Soil conservation is one of the regulation services provided by ecosystems, which plays an important role in maintaining ecological security. Taking Liaohe Conservation Area as the research object, based on China Soil Loss Equation (CSLE) model and Geodetector analysis, the temporal and spatial variation of soil conservation function and its influencing factors were analyzed. The results showed as follows: from 2010 to 2018, the soil erosion in Liaohe Conservation Area was mainly slight and mild erosion, the amount of soil erosion showed a decreasing trend, and the areas with serious soil erosion were mainly located on both sides and lower sections of the river. The function of soil conservation was increasing, and the areas with higher soil conservation were concentrated in the upper and middle sections of the river. The soil conservation function decreased at first then increased with the increase of rainfall and elevation, increased with the increase of slope and vegetation coverage, and decreased in the gradient of forest land, cultivated land, grassland and shrubwood. Landuse type was the dominant factor in the soil conservation pattern in Liaohe Conservation Area. The amount of soil conservation per unit area was the lowest, when the land use type was cultivated land, the rainfall was 657-735 mm, the slope was 35°-68°, the elevation was-73--26 m, and the vegetation coverage was 0-0.3. In this case, Besides, the combination of landuse type with slope has the strongest explanation for the soil conservation ability.

     

/

返回文章
返回