北京市通州区秋季典型工地出口道路尘负荷排放特征

Emission characteristics of road silt loading at the exit of typical construction sites in autumn in Tongzhou District, Beijing

  • 摘要: 为研究不同类型工地以及搅拌站和消纳场出口道路尘负荷变化特征,于2020年秋季对北京市通州区主要施工工地(场站)出口道路及137条常规道路(指未受工地影响的公共道路,包括城市道路和公路)进行道路尘负荷监测。根据AP-42模型计算分析典型工地(场站)出口道路扬尘排放因子和排放量。结果表明:2020年秋季北京市通州区不同类型工地(场站)出口2个方向100 m道路尘负荷均值呈搅拌站>消纳场>拆迁工地>房建工地>水务工地>园林绿化工地>交通工地;常规道路尘负荷均值为0.59 g/m2,各典型工地(场站)出口2个方向100 m道路尘负荷均值是常规道路的1.3~21.1倍;典型工地(场站)出口道路尘负荷随距出口距离变化在不同的工地类型之间差异明显,其出口2个方向各200 m道路的PM10和PM2.5扬尘排放因子高出其背景值的1.26~7.37倍,对应的道路扬尘排放量相当于背景点道路路长增加了0.10~2.55 km,平均值相当于13个典型工地(场站)出口道路各增加了1.16 km;所有监测工地(场站)出口及周边道路尘负荷和道路扬尘PM10、PM2.5排放量空间分布表现为北低南高,其影响因素与工地(场站)类型和密度分布、出口道路类型及车流量等密切相关。

     

    Abstract: In order to study the variation characteristics of road silt loading at exits of different types of construction sites, mixing stations and construction waste disposal sites, the road silt loading monitoring on exit roads of main construction sites (stations) and 137 conventional roads (referred to public roads that were not affected by construction sites, including urban roads and highways) were carried out in Tongzhou District, Beijing in autumn 2020. Dusts emission factors and emissions at exit roads of typical construction sites (stations) were calculated and analyzed based on AP-42 model. The results showed that the average silt loading of 100 m roads in two directions at the exits of different types of construction sites (stations) ranked as mixing station > construction waste disposal site > demolition site > housing construction site > water works site > landscaping site > traffic site. The average silt loading at 100 m roads in two directions at the exit of each typical construction site (station) was 1.3-21.1 times that of conventional road (0.59 g/m 2). The silt loading of the exit road of typical construction sites (stations) varied with the distance from the exit. There were obvious differences between different types of construction sites. PM10 and PM2.5 dust emission factors of 200 m roads in two directions of the exit were of 1.26-7.37 times higher than the background values, and the corresponding road dust emission was equivalent to an increase of 0.10-2.55 km of the road length at the background point, with the average value being equivalent to an increase of the corresponding road length by 1.16 km for each of the exit roads of 13 typical construction sites (stations). The spatial distribution of road silt loading and road dust PM10 and PM2.5 emissions at the exit and surrounding areas of all monitoring sites (stations) was lower in the north and higher in the south, and its influencing factors were closely related to the type and density distribution of construction sites (stations), the type of exit roads and vehicle flow.

     

/

返回文章
返回