Research progress on passivation technologies and their mechanism of reducing soil cadmium uptake by tobacco
-
摘要:
烟草是重要经济作物,且极易吸收镉(Cd),烟草中Cd已成为Cd进入人体的主要来源之一,通过调控措施降低烟草叶片Cd浓度,对保障烟草的品质安全与人体健康具有重要意义。综述了降低烟草Cd浓度的土壤Cd钝化技术,阐明了钝化剂的钝化机理(吸附、离子交换、沉淀、络合和离子拮抗作用等)及影响烟草Cd浓度的因素(包括土壤Cd浓度与化学形态、土壤pH、氧化还原电位、有机质浓度、阳离子交换容量、竞争性金属离子浓度等),阐述了常用钝化剂(石灰、羟基磷灰石、金属氧化物、生物炭、有机肥、海泡石、沸石和膨润土等)的钝化效率及其在实际应用的参数条件,并提出明晰烟草Cd含量标准体系、发展新型钝化材料、结合分子生物学技术调控等建议,以期为降低烟草Cd含量提供基础数据和技术参考。
Abstract:Tobacco is an important economic crop which is readily to uptake cadmium (Cd) from soils, rendering it to be one of the main source of Cd to human bodies. Therefore, reducing Cd content in tobacco leaves through regulation and control measures is important to ensure tobacco quality, safety and human health. The soil Cd passivation technologies to reduce Cd content in tobacco were summarized, and the passivation mechanism of passivators, including adsorption, ion exchange, precipitation, complexation and ion antagonism, was expounded. The factors affecting Cd content in tobacco were also analyzed, including soil Cd concentration and chemical forms, soil pH, redox potential, organic matter concentration, cation exchange capacity, and competitive metal ions. The passivation efficiencies of normal passivators and the parameter conditions in the applications were illustrated, including lime, hydroxyapatite, metal oxides, biochar, organic fertilizer, sepiolite, zeolite and bentonite. Some suggestions were proposed to provide basic data and technical reference for the reduction of Cd content in tobacco, including clarifying the standard system of tobacco Cd content, developing new passivation materials and using molecular biology technologies, etc.
-
Key words:
- tobacco /
- cadmium /
- passivator /
- influence factor /
- mechanism /
- soil
-
表 1 Cd无机钝化剂种类、施用量及其钝化Cd和降低烟草吸收Cd的效果
Table 1. Types and application amount of inorganic Cd passivators and their effects on Cd passivation and the reduction of Cd absorption in tobacco
钝化剂 土壤Cd浓度/(mg/kg) 施用量 土壤钝化前后pH 土壤有效态Cd浓度降低率/% 烟草叶片Cd浓度降低率/% 数据来源 石灰 5.88 16 g/kg 6.02 → 7.82 37.0 87.0 文献[29] 0.90 2 250 kg/hm2 5.06 → 5.63 17 文献[28] 0.07 3 000 kg/hm2 4.52 → 5.98 20.8 23.6 文献[21] 1.65 1 125 kg/hm2 5.98 → 7.48 34.4 文献[40] 生石灰 2.00 2 250 kg/hm2 5.401) 60.2 文献[41] 硅酸钠 5.88 12.5 g/kg 6.02 → 5.97 14.1 74.7 文献[42] 羟基磷灰石 5.88 32 g/kg 6.02 → 6.57 52.4 82.2 文献[42] 0.20 5 g/kg 8.10 → 8.55 5 文献[33] 70.5 50 g/kg 7.30 → 7.51 90.2 文献[34] 磷肥(含磷52%) 82.0 1 000 mg/kg 7.50 → 7.91 17.2 文献[31] 磷酸盐 3.96 5 g/kg 8.201) 54.5 文献[35] 1 000 3.2 g/kg 5.78 → 6.49 47.5 文献[36] 1 000 3.2 g/kg 5.75 → 5.70 37.8 文献[36] 赤泥 0.575 7 500 kg/hm2 5.10 → 6.23 35.4 37.7 文献[21] 针铁矿 801) 1.25 g/L 8.001) 98.2 文献[43] 硫酸锰 0.36 0.8 g/kg 5.911) 7.4(可交换态) 文献[39] 合成磁铁矿 45.92) 25.0 g/L 4.001) 吸附量0.892) 文献[44] 氧化铁污泥 202) 1.00 g/L 4.001) 吸附量14.73) 文献[45] 注:1)为土壤钝化前pH;2)单位为mg/L;3)单位为mg/g。 表 2 Cd有机钝化剂种类、施用量及其固Cd和降低烟草吸收Cd的效果
Table 2. Types and application amount of organic Cd passivators and their effects on Cd fixation and the reduction of Cd absorption in tobacco
钝化剂种类 土壤Cd浓度/
(mg/kg)施用量 土壤钝化
前后pH土壤有效态Cd浓度
降低率/%烟草叶片Cd
浓度降低率/%数据来源 水稻秸秆生物炭 1.27 50 g/kg 5.59 → 6.19 37.7 文献[48] 小麦秸秆生物炭 0.038 20 g/kg 7.61) 12.9(弱酸提取态)、
24.4(还原态)44.4 文献[49] 小麦秸秆生物炭+ZnSO4 0.038 20 g/kg+0.5% ZnSO4溶液 7.61) 19.5 63.8 文献[49] 秸秆猪粪生物炭 2002) 10 g/L 51) 吸附量63.33) 文献[50] 海泡石+生物炭 20 10 g/kg+10 g/kg 7.051) 50 69.6 文献[57] 生物炭 1 20 g/kg 7.451) 56.3 52.6 文献[58] 2 0.2 g/kg 5.93 → 6.37 67 文献[59] 牛粪有机肥 0.15 10 g/kg 6.891) 19.8(DTPA-Cd) 32.5 文献[60] 猪粪有机肥 10 0.3 g/kg 8.11) 23.1(可交换态) 文献[53] 羊粪有机肥 10 0.6 g/kg 8.11) 20.6(可交换态) 文献[53] 鸡粪有机肥 10 0.6 g/kg 8.11) 17.7(可交换态) 文献[53] 药渣有机肥 0.23 60 g/kg 4.98 → 5.35 12.5(可交换态)、
2.76(碳酸盐结合态)文献[54] 生物有机肥(氨基酸≥10%,
有机质≥30%,腐殖酸≥10%)1.65 1500 kg/hm2 5.98 → 6.66 43.6 文献[40] 0.5 mmol/L柠檬酸+黏土矿物或纳米颗粒 5 10 mmol/L 6.51) 5.95 文献[55] 0.5 mmol/L草酸+黏土矿物或纳米颗粒 5 10 mmol/L 6.51) 13.1 文献[55] 0.5 mmol/L组氨酸+黏土矿物或纳米颗粒 5 10 mmol/L 6.51) 21.0 文献[55] 注:1)为土壤钝化前pH;2)单位为mg/L;3)单位为mg/g。 表 3 黏土矿物钝化剂种类、施用量及其固Cd和降低烟草吸收Cd的效果
Table 3. Types and application amount of clay mineral passivators and their effects on Cd fixation and the reduction of Cd absorption in tobacco
钝化剂 土壤Cd浓度/(mg/kg) 施用量/(g/kg) 土壤钝化前后pH 土壤有效态Cd浓度降低率/% 烟草叶片Cd浓度降低率/% 数据来源 海泡石 1.86 25 6.23 → 6.88 37.6 文献[63] 10 15 7.91 → 8.05 64 文献[64] 2 500 5.51 → 7.01 64 文献[67] 19.9 8001) 7.85 → 8.03 35.2 24.8 文献[68] 天然沸石 0.17 60 4.47 → 4.91 28.3 文献[66] 氯化铵改性沸石 0.17 60 4.47 → 4.44 29.6(交换态) 文献[66] 氯化钙改性沸石 0.17 60 4.47 → 4.67 30.1(交换态) 文献[66] 沸石 0.69 10 4.29 → 7.36 吸附量18.42) 文献[69] 沸石粉 0.49 20 6.29 → 7.57 32.3 文献[70] 膨润土 1.65 20 6.29 → 7.69 29.4 文献[70] 蒙脱石 0.69 10 4.29 → 4.15 吸附量40.82) 文献[69] 1)单位为g/m2;2)单位为mg/g。 -
[1] SHAHID M, DUMAT C, KHALID S, et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system[J/OL]. Reviews of Environmental Contamination and Toxicology, 2017. doi: 10.1007/398_2016_8. [2] HAMID Y, TANG L, YASEEN M, et al. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system[J]. Chemosphere,2019,214:259-268. doi: 10.1016/j.chemosphere.2018.09.113 [3] 谭可夫, 涂鹏飞, 杨洋, 等.烟草-红叶甜菜轮作对镉污染农田的修复潜力试验[J]. 环境工程技术学报,2020,10(3):440-448. doi: 10.12153/j.issn.1674-991X.20190167TAN K F, TU P F, YANG Y, et al. Phytoextraction of cadmium contaminated agricultural soil by tobacco and Swiss chard rotation systems[J]. Journal of Environmental Engineering Technology,2020,10(3):440-448. doi: 10.12153/j.issn.1674-991X.20190167 [4] 刘义新, 陶涌, 孟丽华, 等.烤烟品种K326和云烟87对镉胁迫的生理响应及抗性差异[J]. 中国烟草科学,2008,29(4):1-5. doi: 10.3969/j.issn.1007-5119.2008.04.001 [5] VERA-ESTRELLA R, GÓMEZ-MÉNDEZ M F, AMEZCUA-ROMERO J C, et al. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants[J]. Planta,2017,246(3):433-451. doi: 10.1007/s00425-017-2700-1 [6] 张玉涛, 杨兴平, 李琳, 等.重金属Pb、Cr、Cd对烟草生长的影响及其分布规律[J]. 南方农业学报,2012,43(11):1697-1702. doi: 10.3969/j:issn.2095-1191.2012.11.1697ZHANG Y T, YANG X P, LI L, et al. Physiological action, growth, and accumulation rules of Pb, Cr, and Cd in tobacco[J]. Journal of Southern Agriculture,2012,43(11):1697-1702. doi: 10.3969/j:issn.2095-1191.2012.11.1697 [7] 袁祖丽, 马新明, 韩锦峰, 等.镉污染对烟草叶片超微结构及部分元素含量的影响[J]. 生态学报,2005,25(11):2919-2927. doi: 10.3321/j.issn:1000-0933.2005.11.018YUAN Z L, MA X M, HAN J F, et al. Effect of Cd contamination on ultramicroscopic structure and some elements content of tobacco leaves[J]. Acta Ecologica Sinica,2005,25(11):2919-2927. doi: 10.3321/j.issn:1000-0933.2005.11.018 [8] DOMAZLICKÁ E, OPATRNÝ Z. The effect of cadmium on tobacco cell culture and the selection of potentially Cd-resistant cell lines[J]. Biologia Plantarum,1989,31(1):19-27. doi: 10.1007/BF02890675 [9] 闫晶, 姬文秀, 石贤吉, 等.镉胁迫对烟草种子萌发和烟苗生长发育的影响[J]. 作物杂志,2019(2):142-149.YAN J, JI W X, SHI X J, et al. Effects of cadmium stress on seed germination and seedling growth of tobacco (Nicotiana tabacum)[J]. Crops,2019(2):142-149. [10] YAMAMOTO Y, KOBAYASHI Y, DEVI S R, et al. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells[J]. Plant Physiology,2002,128(1):63-72. doi: 10.1104/pp.010417 [11] ROSÉN K, ERIKSSON J, VINICHUK M. Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris)[J]. Journal of Environmental Radioactivity,2012,113:16-20. doi: 10.1016/j.jenvrad.2012.04.008 [12] JÄRUP L, ÅKESSON A. Current status of cadmium as an environmental health problem[J]. Toxicology and Applied Pharmacology,2009,238(3):201-208. doi: 10.1016/j.taap.2009.04.020 [13] GALAŻYN-SIDORCZUK M, BRZÓSKA M M, MONIUSZKO-JAKONIUK J. Estimation of Polish cigarettes contamination with cadmium and lead, and exposure to these metals via smoking[J]. Environmental Monitoring and Assessment,2008,137(1/2/3):481-493. [14] SOBHA K, POORNIMA A, HARINI P, et al. A study on biochemical changes in the fresh water fish, Catla catla (Hamilton) exposed to the heavy metal toxicant cadmium chloride[J]. Kathmandu University Journal of Science, Engineering and Technology,1970,3(2):1-11. doi: 10.3126/kuset.v3i2.2890 [15] PROSHAD R, ZHANG D, UDDIN M, et al. Presence of cadmium and lead in tobacco and soil with ecological and human health risks in Sichuan Province, China[J]. Environmental Science and Pollution Research,2020,27(15):18355-18370. doi: 10.1007/s11356-020-08160-1 [16] 刘海伟, 石屹, 梁洪波.烟草和卷烟中重金属迁移分配的研究进展[J]. 中国农业科技导报,2013,15(2):153-158.LIU H W, SHI Y, LIANG H B. Research progress on transfer and distribution of heavy metal in tobacco and cigarette[J]. Journal of Agricultural Science and Technology,2013,15(2):153-158. [17] PORTER S K, SCHECKEL K G, IMPELLITTERI C A, et al. Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg[J]. Critical Reviews in Environmental Science and Technology,2004,34(6):495-604. doi: 10.1080/10643380490492412 [18] REHMAN M Z U, KHALID H, AKMAL F, et al. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field[J]. Environmental Pollution,2017,227:560-568. doi: 10.1016/j.envpol.2017.05.003 [19] MAHAR A, WANG P, ALI A, et al. (Im)mobilization of soil heavy metals using CaO, FA, sulfur, and Na2S: a 1-year incubation study[J]. International Journal of Environmental Science and Technology,2018,15(3):607-620. doi: 10.1007/s13762-017-1427-7 [20] LIANG X F, XU Y, XU Y M, et al. Two-year stability of immobilization effect of sepiolite on Cd contaminants in paddy soil[J]. Environmental Science and Pollution Research,2016,23(13):12922-12931. doi: 10.1007/s11356-016-6466-y [21] 张蕴睿. 钝化剂对烟草中镉的消减效果研究[D]. 北京: 中国农业科学院, 2013. [22] KARLSSON T, ELGH-DALGREN K, BJÖRN E, et al. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil[J]. Geochimica et Cosmochimica Acta,2007,71(3):604-614. doi: 10.1016/j.gca.2006.10.011 [23] 李英, 朱司航, 商建英, 等.土壤镉和砷污染钝化修复材料及科学计量研究[J]. 农业环境科学学报,2019,38(9):2011-2022. doi: 10.11654/jaes.2019-0601LI Y, ZHU S H, SHANG J Y, et al. Immobilization materials for cadmium and arsenic contaminated soil remediation and their scientific metrology research[J]. Journal of Agro-Environment Science,2019,38(9):2011-2022. doi: 10.11654/jaes.2019-0601 [24] SU Y, LIU J L, LU Z W, et al. Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation[J]. Environmental and Experimental Botany,2014,97:40-48. doi: 10.1016/j.envexpbot.2013.10.001 [25] SHAHEEN S M, RINKLEBE J. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil[J]. Ecological Engineering,2015,74:319-326. doi: 10.1016/j.ecoleng.2014.10.024 [26] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils: to mobilize or to immobilize[J]. Journal of Hazardous Materials,2014,266:141-166. doi: 10.1016/j.jhazmat.2013.12.018 [27] QIN S Y, LIU H, NIE Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review[J]. Pedosphere,2020,30(2):168-180. doi: 10.1016/S1002-0160(20)60002-9 [28] HUANG Y, SHENG H, ZHOU P, et al. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming[J]. Ecotoxicology and Environmental Safety,2020,188:109903. doi: 10.1016/j.ecoenv.2019.109903 [29] 王浩朴, 胡丽, 冯莲莲, 等.石灰、硅酸钠和羟基磷灰石对烟草吸收镉的影响[J]. 热带作物学报,2017,38(8):1434-1440. doi: 10.3969/j.issn.1000-2561.2017.08.010WANG H P, HU L, FENG L L, et al. Effects of slaked lime, sodium silicate and hydroxyapatite on cadmium accumulation in tobacco plant[J]. Chinese Journal of Tropical Crops,2017,38(8):1434-1440. doi: 10.3969/j.issn.1000-2561.2017.08.010 [30] GUPTA D K, CHATTERJEE S, DATTA S, et al. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals[J]. Chemosphere,2014,108:134-144. doi: 10.1016/j.chemosphere.2014.01.030 [31] SIEBERS N, SIANGLIW M, TONGCUMPOU C. Cadmium uptake and subcellular distribution in rice plants as affected by phosphorus: soil and hydroponic experiments[J]. Journal of Soil Science and Plant Nutrition,2013:833-844. [32] 杨国航, 李合莲, 李菊梅, 等.污泥农用对碱性土壤重金属元素形态分布的影响[J]. 济南大学学报(自然科学版),2018,32(2):124-133.YANG G H, LI H L, LI J M, et al. Effect of agricultural application of sludge on forms of heavy metal elements in alkaline soil[J]. Journal of University of Jinan (Science and Technology),2018,32(2):124-133. [33] 武晓微, 翟文珺, 高超, 等.钝化剂对土壤性质及镉生物有效性的影响研究[J]. 农业环境科学学报,2021,40(3):562-569. doi: 10.11654/jaes.2020-0826WU X W, ZHAI W J, GAO C, et al. Influence of passivation on soil properties and bioavailability of cadmium in soils[J]. Journal of Agro-Environment Science,2021,40(3):562-569. doi: 10.11654/jaes.2020-0826 [34] 毛志强, 杨在文, 孙璐, 等.纳米羟基磷灰石修复镉锌复合污染紫色土效果初探[J]. 四川环境,2020,39(3):1-5.MAO Z Q, YANG Z W, SUN L, et al. Preliminary study on the effect of nano-hydroxyapatite for remediation of Cd and Zn contaminated purple soil[J]. Sichuan Environment,2020,39(3):1-5. [35] SUN Y B, SUN G H, XU Y M, et al. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils[J]. Journal of Environmental Management,2016,166:204-210. [36] LEE H H, OWENS V N, PARK S, et al. Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium[J]. Chemosphere,2018,206:369-375. doi: 10.1016/j.chemosphere.2018.04.176 [37] USMAN M, BYRNE J M, CHAUDHARY A, et al. Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals[J]. Chemical Reviews,2018,118(7):3251-3304. doi: 10.1021/acs.chemrev.7b00224 [38] HAMID Y, TANG L, SOHAIL M I, et al. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain[J]. Science of the Total Environment,2019,660:80-96. doi: 10.1016/j.scitotenv.2018.12.419 [39] 顾明华, 李志明, 陈宏, 等.施锰对土壤锰氧化物形成及镉固定的影响[J]. 生态环境学报,2020,29(2):360-368.GU M H, LI Z M, CHEN H, et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil[J]. Ecology and Environmental Sciences,2020,29(2):360-368. [40] 林述平. 不同改良剂组合对烤烟生长和烟株镉含量影响研究[D]. 长沙: 湖南农业大学, 2010. [41] 淡俊豪, 齐绍武, 朱益, 等.生石灰对镉胁迫下土壤酸碱度和烟叶镉含量的影响[J]. 中国农学通报,2017,33(28):19-25. doi: 10.11924/j.issn.1000-6850.casb17060036DAN J H, QI S W, ZHU Y, et al. Effects of quicklime application on soil pH and the cadmium content in tobacco under cadmium stress[J]. Chinese Agricultural Science Bulletin,2017,33(28):19-25. doi: 10.11924/j.issn.1000-6850.casb17060036 [42] LU Y G, MA J, TENG Y, et al. Effect of silicon on growth, physiology, and cadmium translocation of tobacco (Nicotiana tabacum L.) in cadmium-contaminated soil[J]. Pedosphere,2018,28(4):680-689. doi: 10.1016/S1002-0160(17)60417-X [43] 彭琪贵, 施泽明, 王新宇.针铁矿对水溶液中Cd2+、Pb2+的吸附影响[J]. 广州化工,2020,48(17):50-52,93. doi: 10.3969/j.issn.1001-9677.2020.17.018PENG Q G, SHI Z M, WANG X Y. Effect of goethite on adsorption of Cd2+ and Pb2+ in aqueous solution[J]. Guangzhou Chemical Industry,2020,48(17):50-52,93. doi: 10.3969/j.issn.1001-9677.2020.17.018 [44] SHEN Y F, TANG J, NIE Z H, et al. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification[J]. Separation and Purification Technology,2009,68(3):312-319. doi: 10.1016/j.seppur.2009.05.020 [45] PHUENGPRASOP T, SITTIWONG J, UNOB F. Removal of heavy metal ions by iron oxide coated sewage sludge[J]. Journal of Hazardous Materials,2011,186(1):502-507. doi: 10.1016/j.jhazmat.2010.11.065 [46] SILVER S. Frontiers in ecology and the environment[J]. Bulletin of the Ecological Society of America,2008,89(4):310-313. doi: 10.1890/0012-9623(2008)89[310:FIE]2.0.CO;2 [47] GONZAGA M I S, MACKOWIAK C, QUINTÃO de ALMEIDA A, et al. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil[J]. Chemosphere,2018,201:278-285. doi: 10.1016/j.chemosphere.2018.03.038 [48] 张迪, 吴晓霞, 丁爱芳, 等.生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响[J]. 环境化学,2019,38(11):2526-2534.ZHANG D, WU X X, DING A F, et al. Effects of hydrated lime and biochar on the bioavailability of Cd and Pb and microbial activity in a contaminated soil[J]. Environmental Chemistry,2019,38(11):2526-2534. [49] 刘领, 悦飞雪, 李继伟, 等.镉胁迫下生物炭与锌/钾叶面肥促进烟草生长降低镉富集的协同效应[J]. 植物营养与肥料学报,2019,25(6):982-990. doi: 10.11674/zwyf.18283LIU L, YUE F X, LI J W, et al. Interaction between biochar and Zn or K foliar fertilizer on the growth and Cd uptake of tobacco under cadmium stress[J]. Journal of Plant Nutrition and Fertilizers,2019,25(6):982-990. doi: 10.11674/zwyf.18283 [50] 陈乔, 任心豪, 贺飞, 等.定量分析秸秆和猪粪生物炭对镉的吸附作用[J]. 农业环境科学学报,2021,40(3):668-676. doi: 10.11654/jaes.2020-0974CHEN Q, REN X H, HE F, et al. Quantitative analysis of the adsorption of cadmium on wheat straw and pig manure biochar[J]. Journal of Agro-Environment Science,2021,40(3):668-676. doi: 10.11654/jaes.2020-0974 [51] 孙翠平, 李彦, 张英鹏, 等.农田重金属钝化剂研究进展[J]. 山东农业科学,2016,48(8):147-153. [52] 刘晓佩, 李鸣晓, 戴昕, 等.不同菌剂制备餐厨垃圾液态有机肥过程物质转化规律研究[J]. 环境工程技术学报,2021,11(4):750-755. doi: 10.12153/j.issn.1674-991X.20200229LIU X P, LI M X, DAI X, et al. Study on the law of substance transformation in the process of liquid organic fertilizer preparation from food waste with different microbial agents[J]. Journal of Environmental Engineering Technology,2021,11(4):750-755. doi: 10.12153/j.issn.1674-991X.20200229 [53] 刘秀珍, 马志宏, 赵兴杰.不同有机肥对镉污染土壤镉形态及小麦抗性的影响[J]. 水土保持学报,2014,28(3):243-247.LIU X Z, MA Z H, ZHAO X J. Effect of different organic manure on cadmium form of soil and resistance of wheat in cadmium contaminated soil[J]. Journal of Soil and Water Conservation,2014,28(3):243-247. [54] 陈芬, 余高, 吴涵茜, 等.中药渣生物有机肥对镉-汞复合污染土壤的钝化效果[J]. 浙江大学学报(农业与生命科学版),2020,46(6):737-747.CHEN F, YU G, WU H Q, et al. Effects of bio-organic fertilizer made from Chinese traditional herb residues on heavy metal passivation in Cd and Hg compound-contaminated soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2020,46(6):737-747. [55] TAGHIPOUR M, JALALI M. Heavy metal release from some industrial wastes: influence of organic and inorganic acids, clay minerals, and nanoparticles[J]. Pedosphere,2018,28(1):70-83. doi: 10.1016/S1002-0160(18)60005-0 [56] NAIDU R, SUMNER M E, HARTER R D. Sorption of heavy metals in strongly weathered soils: an overview[J]. Environmental Geochemistry and Health,1998,20(1):5-9. doi: 10.1023/A:1006519009465 [57] 刘跃东, 郑梅迎, 刘祥, 等.海泡石及生物炭对甲霜灵和镉复合污染条件下烟草生长发育和污染物含量的影响[J]. 烟草科技,2020,53(7):1-9. [58] 尤方芳, 赵铭钦, 孙翠红, 等.生物炭与不同肥料配施对镉胁迫下烟叶和土壤中镉含量的影响[J]. 中国农业科技导报,2016,18(4):115-123.YOU F F, ZHAO M Q, SUN C H, et al. Effects of combined application of biochar and different fertilizers on cadmium content in tobacco and soil under cadmium stress[J]. Journal of Agricultural Science and Technology,2016,18(4):115-123. [59] 梁仲哲, 齐绍武, 淡俊豪, 等.生物炭对镉胁迫下烟草镉含量动态变化及土壤理化性质的影响[J]. 江苏农业科学,2018,46(1):56-59. [60] WANG F Y, WANG L, SHI Z Y, et al. Effects of AM inoculation and organic amendment, alone or in combination, on growth, P nutrition, and heavy-metal uptake of tobacco in Pb-Cd-contaminated soil[J]. Journal of Plant Growth Regulation,2012,31(4):549-559. doi: 10.1007/s00344-012-9265-9 [61] CHURCHMAN G J, GATES W P, THENG B K G, et al. Chapter 11.1 clays and clay minerals for pollution control[J]. Developments in Clay Science,2006,1:625-675. [62] PADILLA-ORTEGA E, LEYVA-RAMOS R, FLORES-CANO J V. Binary adsorption of heavy metals from aqueous solution onto natural clays[J]. Chemical Engineering Journal,2013,225:535-546. doi: 10.1016/j.cej.2013.04.011 [63] 王玉婷, 王紫玥, 刘田田, 等.钝化剂对镉污染土壤修复效果及青菜生理效应影响[J]. 环境化学,2020,39(9):2395-2403. doi: 10.7524/j.issn.0254-6108.2020032505WANG Y T, WANG Z Y, LIU T T, et al. Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi[J]. Environmental Chemistry,2020,39(9):2395-2403. doi: 10.7524/j.issn.0254-6108.2020032505 [64] 党义伟, 王婉琴, 李婕, 等.海泡石对菜地土壤Cd污染的影响[J]. 山西化工,2020,40(5):17-18. [65] ALLEN E R, MING D W. Use of natural zeolites in agronomy, horticulture and environmental soil remediation[J]. Reviews in Mineralogy and Geochemistry,2001,45(1):619-654. [66] 郭炜辰, 杜立宇, 梁成华, 等.天然与改性沸石对土壤Cd污染赋存形态的影响研究[J]. 土壤通报,2019,50(3):719-724.GUO W C, DU L Y, LIANG C H, et al. Effects of natural and ammonium chloride/calcium chloride-modified zeoliteson cadmium speciation in contaminated soil[J]. Chinese Journal of Soil Science,2019,50(3):719-724. [67] 邸慧慧, 呙亚屏, 李平, 等.海泡石在Cd污染植烟土壤改良中的应用研究[J]. 中国烟草学报,2014,20(4):53-56. doi: 10.3969/j.issn.1004-5708.2014.04.011 [68] 曾维爱, 曾敏, 李宏光, 等.海泡石及钙镁磷肥对烟草主要农艺性状及吸收镉的影响[J]. 湖南农业大学学报(自然科学版),2012,38(4):435-437.ZENG W A, ZENG M, LI H G, et al. Effects of sepiolite and calcium magnesium phosphate fertilizer on agronomic character and cadmium uptake of tobacco[J]. Journal of Hunan Agricultural University (Natural Sciences),2012,38(4):435-437. [69] SUN Y, WU Q T, LEE C C C, et al. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils[J]. International Journal of Phytoremediation,2014,16(5):496-508. doi: 10.1080/15226514.2013.798617 [70] 王立群, 罗磊, 马义兵, 等.不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响[J]. 农业环境科学学报,2009,28(6):1098-1105. doi: 10.3321/j.issn:1672-2043.2009.06.003WANG L Q, LUO L, MA Y B, et al. Effects of different amendments and incubation times on exchangeable cadmium in contaminated soils[J]. Journal of Agro-Environment Science,2009,28(6):1098-1105. doi: 10.3321/j.issn:1672-2043.2009.06.003 [71] CHOPPALA G, SAIFULLAH, BOLAN N, et al. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity[J]. Critical Reviews in Plant Sciences,2014,33(5):374-391. doi: 10.1080/07352689.2014.903747 [72] ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology,2015,49(2):750-759. [73] 程睿.铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095CHENG R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology,2020,10(2):280-287. doi: 10.12153/j.issn.1674-991X.20190095 [74] RAO R A K, KASHIFUDDIN M. Adsorption studies of Cd(Ⅱ) on ball clay: comparison with other natural clays[J]. Arabian Journal of Chemistry,2016,9:S1233-S1241. doi: 10.1016/j.arabjc.2012.01.010 [75] 王祖泽.过磷酸钙的含镉量及其对土壤的影响[J]. 四川农业大学学报,1986,4(1):185. [76] DUPLAY J, SEMHI K, ERRAIS E, et al. Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils (Rouffach, France): the impact of cultural practices[J]. Geoderma,2014,230/231:318-328. doi: 10.1016/j.geoderma.2014.04.022 [77] XIAO W D, YE X Z, ZHANG Q, et al. Evaluation of cadmium transfer from soil to leafy vegetables: influencing factors, transfer models, and indication of soil threshold contents[J]. Ecotoxicology and Environmental Safety,2018,164:355-362. doi: 10.1016/j.ecoenv.2018.08.041 [78] BOLAN N, MAHIMAIRAJA S, KUNHIKRISHNAN A, et al. Sorption-bioavailability Nexus of arsenic and cadmium in variable-charge soils[J]. Journal of Hazardous Materials,2013,261:725-732. doi: 10.1016/j.jhazmat.2012.09.074 [79] ARDESTANI M M, van GESTEL C A M. Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida[J]. Environmental Pollution,2013,180:122-130. doi: 10.1016/j.envpol.2013.05.024 [80] SAUVÉ S, HENDERSHOT W, ALLEN H E. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter[J]. Environmental Science & Technology,2000,34(7):1125-1131. [81] JIAO W T, CHEN W P, CHANG A C, et al. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review[J]. Environmental Pollution,2012,168:44-53. doi: 10.1016/j.envpol.2012.03.052 [82] KABATA-PENDIAS A. Trace elements in soils and plants[M]. 4th ed. Oxfordshire: Taylor and Francis, 2010. [83] GUO S H, LIU Z L, LI Q S, et al. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying[J]. Chemosphere,2016,157:262-270. doi: 10.1016/j.chemosphere.2016.05.019 [84] RINKLEBE J, SHAHEEN S M, YU K W. Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the USA and Asia[J]. Geoderma,2016,270:21-32. doi: 10.1016/j.geoderma.2015.10.011 [85] QUENEA K, LAMY I, WINTERTON P, et al. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water[J]. Geoderma,2009,149(3/4):217-223. [86] CABANISS S E, ZHOU Q H, MAURICE P A, et al. A log-normal distribution model for the molecular weight of aquatic fulvic acids[J]. Environmental Science & Technology,2000,34(6):1103-1109. [87] CALACE N, PETRONIO B M. The role of organic matter on metal toxicity and bio-availability[J]. Annali Di Chimica,2004,94(7/8):487-493. [88] SHAHID M, AUSTRUY A, ECHEVARRIA G, et al. EDTA-enhanced phytoremediation of heavy metals: a review[J]. Soil and Sediment Contamination:an International Journal,2014,23(4):389-416. doi: 10.1080/15320383.2014.831029 [89] REUTER J H, PERDUE E M. Importance of heavy metal-organic matter interactions in natural waters[J]. Geochimica et Cosmochimica Acta,1977,41(2):325-334. doi: 10.1016/0016-7037(77)90240-X [90] HE Z L, XU H P, ZHU Y M, et al. Adsorption-desorption characteristics of cadmium in variable charge soils[J]. Journal of Environmental Science and Health, Part A,2005,40(4):805-822. doi: 10.1081/ESE-200048273 [91] ASTOLFI S, ZUCHI S, NEUMANN G, et al. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation[J]. Journal of Experimental Botany,2012,63(3):1241-1250. doi: 10.1093/jxb/err344 [92] SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell,2012,24(5):2155-2167. doi: 10.1105/tpc.112.096925 [93] RAHMAN A, NAHAR K, HASANUZZAMAN M, et al. Manganese-induced cadmium stress tolerance in rice seedlings: coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis[J]. Comptes Rendus Biologies,2016,339(11/12):462-474. [94] WANG M E, YANG Y, CHEN W P. Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in Southern China[J]. Journal of Environmental Quality,2018,47(2):306-311. doi: 10.2134/jeq2017.06.0237 [95] FAHAD S, HUSSAIN S, KHAN F, et al. Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions[J]. Environmental Science and Pollution Research,2015,22(16):12424-12434. doi: 10.1007/s11356-015-4518-3 [96] YOSHIHARA T, SUZUI N, ISHII S, et al. A kinetic analysis of cadmium accumulation in a Cd hyper-accumulator fern, Athyrium yokoscense and tobacco plants[J]. Plant, Cell & Environment,2014,37(5):1086-1096. [97] 雷丽萍, 刘彬, 陈世宝, 等.不同烟草对Cd吸收的敏感性分布及烟草中Cd的结合形态[J]. 农业环境科学学报,2015,34(10):1858-1864. doi: 10.11654/jaes.2015.10.004LEI L P, LIU B, CHEN S B, et al. Cd-phytotoxicity species sensitivity distributions and root Cd forms of different tobacco cultivars[J]. Journal of Agro-Environment Science,2015,34(10):1858-1864. doi: 10.11654/jaes.2015.10.004 [98] 岳昊. 不同烟草品种的耐镉性差异及其耐性机理研究[D]. 长沙: 湖南农业大学, 2015. [99] SZOLNOKI Z, FARSANG A, PUSKÁS I. Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals[J]. Environmental Pollution,2013,177:106-115. doi: 10.1016/j.envpol.2013.02.007 [100] 陈庆园, 商胜华, 陆宁.不同打顶方式对烤烟吸收重金属的影响[J]. 中国烟草学报,2011,17(2):49-53. doi: 10.3969/j.issn.1004-5708.2011.02.010 [101] 陈庆园, 商胜华, 陆宁.覆膜栽培对烤烟重金属含量的影响[J]. 烟草科技,2010,43(6):68-72. doi: 10.3969/j.issn.1002-0861.2010.06.014 [102] HOVMAND M F, TJELL J C, MOSBAEK H. Plant uptake of airborne cadmium[J]. Environmental Pollution Series A, Ecological and Biological,1983,30(1):27-38. doi: 10.1016/0143-1471(83)90029-6 [103] 尚志强, 王树会. 镉在不同植烟土壤类型中的吸收与分配[C]//第三届全国农业环境科学学术研讨会论文集. 北京: 中国农业生态环境保护协会、农业部环境保护科研监测所, 2009: 4.