含酚废水α-Fe2O3催化臭氧氧化参数优化及机理分析

Optimization and mechanism analysis of α-Fe2O3 catalytic ozone oxidation parameters for phenolic wastewater

  • 摘要: 传统工艺对含酚废水的处理效果有限,催化臭氧氧化技术能够有效处理含酚废水。α-Fe2O3在试验中表现出了高臭氧催化活性,催化产生的·OH可对苯酚及中间产物进行无选择性矿化,显著增强了污染物去除效果和臭氧利用水平。为明确催化臭氧氧化过程主要影响因素并优化工艺参数,以苯酚模拟含酚废水,设计了L16(44)正交试验。结果表明,臭氧投加量、催化剂投加量、pH、反应时间是COD去除率及单位臭氧COD降解量的主要影响因素,其中,臭氧投加量与反应时间的影响较为显著。方差分析与试验验证表明,催化剂投加量对COD去除率影响较小,pH对单位臭氧COD降解量影响较小。通过权矩阵计算得到优化后的反应条件:臭氧投加量为5 mg/(L·min),催化剂投加量为0.10 g/L,pH为9,反应时间为45 min。叔丁醇屏蔽试验表明,·OH显著促进了催化臭氧氧化进程。

     

    Abstract: The traditional process has a limited effect on the treatment of phenolic wastewater, and catalytic ozonation technology can effectively treat phenolic wastewater. α-Fe2O3 has exhibited high ozone catalytic activity in previous experiments. ·OH produced by catalysis can non-selectively mineralize phenol and intermediate products, which significantly enhances the removal of pollutants and the level of ozone utilization. In order to clarify the main influencing factors of the catalytic ozone oxidation process and optimize the process parameters, phenol was used to simulate phenolic wastewater, and L16(44) orthogonal experiment was designed. The results showed that ozone dosage, catalyst dosage, pH, and reaction time were the main influencing factors of COD removal rate and COD degradation per unit ozone. Among them, ozone dosage and reaction time had the most significant impact on the two indicators. Variance analysis and experimental verification showed that catalyst dosage had little effect on COD removal rate, and reaction pH had little effect on COD degradation per unit ozone. The optimized process parameters were calculated by weight matrix: ozone dosage was 5 mg/(L·min), catalyst dosage was 0.1 g/L, pH was 9, and reaction time was 45 min. Tert butyl alcohol shielding experiments showed that ·OH significantly promoted the catalytic ozone oxidation process.

     

/

返回文章
返回