留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性蓝藻生物炭促进生物电化学系统阴极氢自养反硝化过程研究

熊江磊 罗嘉豪 严群

熊江磊,罗嘉豪,严群.改性蓝藻生物炭促进生物电化学系统阴极氢自养反硝化过程研究[J].环境工程技术学报,2022,12(5):1640-1646 doi: 10.12153/j.issn.1674-991X.20210362
引用本文: 熊江磊,罗嘉豪,严群.改性蓝藻生物炭促进生物电化学系统阴极氢自养反硝化过程研究[J].环境工程技术学报,2022,12(5):1640-1646 doi: 10.12153/j.issn.1674-991X.20210362
XIONG J L,LUO J H,YAN Q.Research on modified cyanobacterial biochar promoting cathodic hydrogen autotrophic denitrification in bioelectrochemical system[J].Journal of Environmental Engineering Technology,2022,12(5):1640-1646 doi: 10.12153/j.issn.1674-991X.20210362
Citation: XIONG J L,LUO J H,YAN Q.Research on modified cyanobacterial biochar promoting cathodic hydrogen autotrophic denitrification in bioelectrochemical system[J].Journal of Environmental Engineering Technology,2022,12(5):1640-1646 doi: 10.12153/j.issn.1674-991X.20210362

改性蓝藻生物炭促进生物电化学系统阴极氢自养反硝化过程研究

doi: 10.12153/j.issn.1674-991X.20210362
基金项目: 江苏省“双创博士”企业创新类人才项目(〔2019〕30279号);江苏省“双创人才”项目(〔2020〕10342号)
详细信息
    作者简介:

    熊江磊(1984—),男,高级工程师,博士,研究方向为工业废水的处理及资源化,xiongjianglei@hotmail.com

  • 中图分类号: X52,X703

Research on modified cyanobacterial biochar promoting cathodic hydrogen autotrophic denitrification in bioelectrochemical system

  • 摘要:

    以太湖蓝藻为原料制备不同种类的活性生物炭,并将其投入到生物电化学系统(BES)的阴极促进氢自养反硝化。通过扫描电镜、能谱仪和傅里叶红外光谱对未经改性(ABC-800)、硝酸改性(ABC-800N)和KOH改性(ABC-800K)3组蓝藻生物炭进行观察,并与不加入蓝藻生物炭的对照组进行比较,以考察生物炭促进BES生物阴极的反硝化过程中的电子传递机制。结果表明:ABC-800N表面的N、O元素含量最高,同时与电子传递能力及生物相容性相关的共轭醌、酮结构的丰度也最高;将蓝藻生物炭投加至BES的非生物阴极中可提高阴极的脱氮效率,ABC-800N投加量为0.5 g时,7 d内脱氮效率达到最高,为96.0%,而对照组仅为29.6%;高通量测序表明,ABC-800N组的优势菌属为Thauera、JGI_0001001_H03、ThiobacillusDenitratisoma等。

     

  • 图  1  3种生物炭材料的表面形貌

    Figure  1.  Surface morphology of the three biochar materials

    图  2  3种生物炭材料表面N元素含量分布

    Figure  2.  Distribution of N element content on the surface of three biochar materials

    图  3  3种生物炭材料表面O元素含量分布

    Figure  3.  Distribution of O element content on the surface of three biochar materials

    图  4  3种生物炭的N2吸附-脱附曲线和孔径分布

    Figure  4.  Nitrogen adsorption-desorption isotherms and pore width distribution of the three materials

    图  5  不同生物炭材料的FTIR谱图

    Figure  5.  FTIR spectra of different biochar materials

    图  6  2 组非生物阴极硝氮、亚硝氮浓度随时间的变化

    Figure  6.  Variation of nitrate and nitrite concentrations with time in two groups of abiotic cathodes

    图  7  投加3种生物炭材料后生物阴极硝氮、亚硝氮浓度随时间的变化

    注:柱状代表亚硝氮浓度;点状代表硝氮浓度。

    Figure  7.  Variation of nitrate and nitrite concentrations with time in biological cathode under the addition of three biochar materials

    图  8  添加不同生物炭材料时反应器内微生物种群相对丰度

    Figure  8.  Relative abundance of microbial population in reactors with different biochar materials addition

    表  1  3种生物炭材料表面元素含量

    Table  1.   Surface element contents of the three biochar materials % 

    生物炭CNOK
    ABC-80086.886.886.24
    ABC-800N67.6113.2719.12
    ABC-800K76.787.0415.980.2
    下载: 导出CSV

    表  2  投加不同生物炭材料后各组反应器微生物的共有OTU在门水平的相对丰度

    Table  2.   Relative abundance of shared OTU of microorganisms in each reactor at phylum level after different biochar materials addition % 

    细菌门对照组ABC-800ABC-800NABC-800K
    Proteobacteria52.1537.6330.9636.02
    Firmicutes2.634.374.265.38
    Chloroflexi8.329.0011.518.62
    Bacteroidota12.9127.4928.8821.89
    Actinobacteriota3.529.789.337.68
    Synergisteota4.200.300.990.56
    Acidobacteriota0.552.899.084.94
    下载: 导出CSV
  • [1] 杨延梅, 张田, 郑明霞, 等.基于水化学及当地稳定同位素的地下水硝酸盐污染空间分布特征及污染源解析[J]. 环境科学研究,2021,34(9):2164-2172. doi: 10.13198/j.issn.1001-6929.2021.05.21

    YANG Y M, ZHANG T, ZHENG M X, et al. Spatial distribution characteristics and pollution source analysis of nitrate pollution in groundwater based on hydrochemistry and local stable isotopes[J]. Research of Environmental Sciences,2021,34(9):2164-2172. doi: 10.13198/j.issn.1001-6929.2021.05.21
    [2] LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337(6095):686-690. doi: 10.1126/science.1217412
    [3] LIANG D D, HE W H, LI C, et al. Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell[J]. Water Research,2021,188:116498. doi: 10.1016/j.watres.2020.116498
    [4] PARK H I, CHOI Y J, PAK D. Autohydrogenotrophic denitrifying microbial community in a glass beads biofilm reactor[J]. Biotechnology Letters,2005,27(13):949-953. doi: 10.1007/s10529-005-7654-x
    [5] 许子聪, 李海松, 胡培基.污泥膨胀对反硝化中试反应器效能及菌群结构的影响[J]. 环境工程技术学报,2019,9(2):139-144. doi: 10.12153/j.issn.1674-991X.2018.10.300

    XU Z C, LI H S, HU P J. The effects of filamentous sludge bulking on performance and bacterial community structure of pilot-scale denitrification reactor[J]. Journal of Environmental Engineering Technology,2019,9(2):139-144. doi: 10.12153/j.issn.1674-991X.2018.10.300
    [6] 马金莲, 马晨, 汤佳, 等.电子穿梭体介导的微生物胞外电子传递: 机制及应用[J]. 化学进展,2015,27(12):1833-1840. doi: 10.7536/PC150533

    MA J L, MA C, TANG J, et al. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer[J]. Progress in Chemistry,2015,27(12):1833-1840. doi: 10.7536/PC150533
    [7] 曹璟, 王鹏飞, 陈俊伊, 等.改性生物炭材料原位修复污染底泥的效果[J]. 环境工程技术学报,2020,10(4):661-670. doi: 10.12153/j.issn.1674-991X.20200021

    CAO J, WANG P F, CHEN J Y, et al. Study on the effect of modified biochar materials on in situ remediation of contaminated sediments[J]. Journal of Environmental Engineering Technology,2020,10(4):661-670. doi: 10.12153/j.issn.1674-991X.20200021
    [8] PRADO A, BERENGUER R, ESTEVE A. Electroactive biochar outperforms highly conductive carbon materials for biodegrading pollutants by enhancing microbial extracellular electron transfer[J]. Carbon,2019,146:597-609. doi: 10.1016/j.carbon.2019.02.038
    [9] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: a review[J]. Journal of Cleaner Production,2019,227:1002-1022. doi: 10.1016/j.jclepro.2019.04.282
    [10] SU X X, WANG Y Y, HE Q, et al. Biochar remediates denitrification process and N2O emission in pesticide chlorothalonil-polluted soil: role of electron transport chain[J]. Chemical Engineering Journal,2019,370:587-594. doi: 10.1016/j.cej.2019.03.195
    [11] 杨秋钰. 阴极强化对BES氢自养反硝化脱氮过程的影响研究[D]. 无锡: 江南大学, 2020.
    [12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [13] WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22(45):23710-23725. doi: 10.1039/C2JM34066F
    [14] DONG X L, MA L Q, ZHU Y J, et al. Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry[J]. Environmental Science & Technology,2013,47(21):12156-12164.
    [15] ZHAO B, O'CONNOR D, ZHANG J L, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production,2018,174:977-987. doi: 10.1016/j.jclepro.2017.11.013
    [16] YANG F, ZHANG S S, LI H P, et al. Corn straw-derived biochar impregnated with α-FeOOH nanorods for highly effective copper removal[J]. Chemical Engineering Journal,2018,348:191-201. doi: 10.1016/j.cej.2018.04.161
    [17] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology,2012,107:419-428. doi: 10.1016/j.biortech.2011.11.084
    [18] YUN H, LIANG B, KONG D Y, et al. Improving biocathode community multifunctionality by polarity inversion for simultaneous bioelectroreduction processes in domestic wastewater[J]. Chemosphere,2018,194:553-561. doi: 10.1016/j.chemosphere.2017.12.030
    [19] YAO M C, DUAN L, WEI J, et al. Carbamazepine removal from wastewater and the degradation mechanism in a submerged forward osmotic membrane bioreactor[J]. Bioresource Technology,2020,314:123732. doi: 10.1016/j.biortech.2020.123732
    [20] CHEN M, ZHOU X F, YU Y Q, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans[J]. Environment International,2019,127:353-360. doi: 10.1016/j.envint.2019.03.045
    [21] TIAN X M, SHEN Z Q, ZHOU Y X, et al. Inhibition on biological acidification and microbial community by high-strength acetaldehyde[J]. Process Safety and Environmental Protection,2020,143:231-238. doi: 10.1016/j.psep.2020.07.001
    [22] GUSTAVE W, YUAN Z F, SEKAR R, et al. Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells[J]. Research in Microbiology,2019,170(2):97-104. doi: 10.1016/j.resmic.2018.11.002
    [23] ZHU C Y, WANG H L, YAN Q, et al. Enhanced denitrification at biocathode facilitated with biohydrogen production in a three-chambered bioelectrochemical system (BES) reactor[J]. Chemical Engineering Journal,2017,312:360-366. doi: 10.1016/j.cej.2016.11.152
    [24] WU L N, SHEN M Y, LI J, et al. Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal[J]. Environmental Pollution,2019,254:112965. ⊗ doi: 10.1016/j.envpol.2019.112965
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  306
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29

目录

    /

    返回文章
    返回