-
摘要: 以新疆开都河流域为研究对象,分别在开都河上游支流、干流及下游博斯腾湖(简称博湖)设置了15、12及17个采样点,于2014年6—10月及2015年6—9月进行了9次水环境调查,探讨了开都河流域不同类型水体理化参数时空分布特征及其形成原因。结果表明,开都河流域支流、干流和博湖水体主要水环境参数时空差异显著。开都河支流和干流pH、水温、矿化度(TDS)、总氮(TN)浓度、高锰酸盐指数(CODMn)和叶绿素a(Chla)浓度均显著低于下游的博湖,但浊度显著高于博湖,尤其是在6—8月的雨季,而开都河干流水体TP浓度显著高于支流及博湖。博湖TDS均值为1.62 mg/L,水体呈微咸水状态。博湖TDS与TP浓度和CODMn空间分布特征较为一致,表现为西北部>东南部>西南部;TN浓度均值为0.88 mg/L,呈现由西北黄水沟水域及西南河口区向湖心及东部逐步降低的趋势。这种盐分及营养盐的空间分布特征与流域内频繁的农业活动及开都河的污染输入密切相关。Abstract: Taking River Kaidu Catchment as the research object, 15, 12 and 17 sampling sites were set up in the upstream tributaries, the mainstream of River Kaidu and the downstream Lake Bosten, respectively. Nine water environmental investigations were conducted during June to October in 2014 and June to September in 2015. The spatial-temporal distribution characteristics of physiochemical parameters in different water bodies in River Kaidu Catchment were explored, and the related reasons were discussed. The results showed that the main physiochemical parameters in tributaries, mainstream and Lake Bosten differed significantly along different spatial-temporal scales. pH, water temperature, total dissolved solids (TDS), total nitrogen (TN), permanganate index (CODMn) and chlorophyll a (Chla) in tributaries and mainstream were significantly lower than those in Lake Bosten, while the turbidity in tributaries and mainstream was significantly higher than that in Lake Bosten, especially during the rainy season from June to August. The concentration of total phosphorous (TP) in mainstream was significantly higher than that in tributaries and Lake Bosten. The average concentration of TDS in Lake Bosten was 1.62 mg/L, indicating a status of oligosaline of this lake. The spatial distributions of TDS, TP and CODMn in Lake Bosten were similar, showing the spatial distribution characteristics of northwest > southeast > southwest. The average concentration of TN in Lake Bosten was 0.88 mg/L, and showed a decreasing trend from the northwest Huangshuigou area and southwest river mouth area to mid-lake as well as the east of the lake. The spatial characteristics of salt and nutrients in Lake Bosten were closely correlated with the frequent agricultural activities in the catchment and the input runoff from River Kaidu.
-
Keywords:
- River Kaidu /
- Lake Bosten /
- water environment /
- water quality /
- salinization /
- agricultural activities
-
-
[1] 胡汝骥, 姜逢清, 王亚俊, 等. 论中国干旱区湖泊研究的重要意义[J]. 干旱区研究, 2007, 24(2):137-140. HU R J, JIANG F Q, WANG Y J, et al. On the importance of research on the lakes in arid land of China[J]. Arid Zone Research, 2007, 24(2):137-140.
[2] 冉新军, 沈利, 李新虎. 博斯腾湖生态环境效应分析[J]. 水资源与水工程学报, 2010, 21(1):105-108. RAN X J, SHEN L, LI X H. Analysis of ecological environment effects in Bosten Lake[J]. Journal of Water Resources and Water Engineering, 2010, 21(1):105-108.
[3] 李卫红, 袁磊. 新疆博斯腾湖水盐变化及其影响因素探讨[J]. 湖泊科学, 2002, 14(3):223-227.
doi: 10.18307/2002.0305LI W H, YUAN L. On the water-salt change of Bosten Lake in Xinjiang[J]. Journal of Lake Sciences, 2002, 14(3):223-227. doi: 10.18307/2002.0305
[4] SHI Y F, ZHANG X S. Impact of climate change on surface water resource and tendency in the future in the arid zone of Northwestern China[J]. Science in China (Series B), 1995, 38(11):1395-1408.
[5] 陈亚宁, 杜强, 陈跃滨, 等. 博斯腾湖流域水资源可持续利用研究[M]. 北京: 科学出版社, 2013. [6] 王水献, 吴彬, 郭玉川. 焉耆盆地绿洲区土地利用变化对生态系统服务价值影响研究[J]. 干旱区资源与环境, 2012, 26(10):138-143. WANG S X, WU B, GUO Y C. The land-use change and it ecosystem services value effects in Yanqi Basin Oasis,Xinjiang[J]. Journal of Arid Land Resources and Environment, 2012, 26(10):138-143.
[7] MAMAT A, WANG J P, MA Y X. Impacts of land-use change on ecosystem service value of mountain-oasis-desert ecosystem:a case study of Kaidu-Kongque River Basin,Northwest China[J]. Sustainability, 2020, 13(1):140.
doi: 10.3390/su13010140[8] DAI X A, YANG X P, WANG M L, et al. The dynamic change of Bosten Lake area in response to climate in the past 30 years[J]. Water, 2019, 12(1):4.
doi: 10.3390/w12010004[9] 谢贵娟, 张建平, 汤祥明, 等. 博斯腾湖水质现状(2010—2011年)及近50年来演变趋势[J]. 湖泊科学, 2011, 23(6):837-846.
doi: 10.18307/2011.0603XIE G J, ZHANG J P, TANG X M, et al. Spatio-temporal heterogeneity of water quality(2010-2011) and succession patterns in Lake Bosten during the past 50 years[J]. Journal of Lake Sciences, 2011, 23(6):837-846. doi: 10.18307/2011.0603
[10] 陈亚宁, 吾买尔江·吾布力, 艾克热木·阿布拉,等. 塔里木河下游近20 a输水的生态效益监测分析[J]. 干旱区地理, 2021, 44(3):605-611. CHEN Y, WUBULI W, ABULA A, et al. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 years[J]. Arid Land Geography, 2021, 44(3):605-611.
[11] 高光, 汤祥明, 赛·巴雅尔图. 博斯腾湖生态环境演化[M]. 北京: 科学出版社, 2013. [12] 程其畴. 博斯腾湖研究[M]. 南京: 河海大学出版社, 1995. [13] 孙占东, Opp Christian, 王润,等. 博斯腾湖流域山区地表径流对近期气候变化的响应[J]. 山地学报, 2010, 28(2):206-211. SUN Z D, OPP C, WANG R, et al. Response of land surface flow to climate change in the mountain regions of Bosten Lake valley,Xingjiang,China[J]. Journal of Mountain Science, 2010, 28(2):206-211.
[14] 国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002. [15] HAYNES W. Bonferroni correction[M]//Encyclopedia of Systems Biology. New York: Springer, 2013: 154.
[16] 汤祥明, 李鸿凯, 邵克强. 干旱地区高寒草原湿地生态安全调查与评估:以新疆巴音布鲁克草原为例[M]. 北京: 科学出版社, 2018. [17] 李超, 李雪梅, 罗栋梁, 等. 开都河上游高寒湿地退化风险评估[J]. 湿地科学, 2020, 18(2):173-182. LI C, LI X M, LUO D L, et al. Degradation risk assessment of alpine wetlands in the upper reaches of Kaidu River[J]. Wetland Science, 2020, 18(2):173-182.
[18] 向燕芸, 陈亚宁, 张齐飞, 等. 天山开都河流域积雪、径流变化及影响因子分析[J]. 资源科学, 2018, 40(9):1855-1865. XIANG Y Y, CHEN Y N, ZHANG Q F, et al. Trends of snow cover and streamflow variation in Kaidu River and their influential factors[J]. Resources Science, 2018, 40(9):1855-1865.
[19] 钟瑞森, 董新光. 新疆博斯腾湖水盐平衡及水环境预测[J]. 湖泊科学, 2008, 20(1):58-64.
doi: 10.18307/2008.0109ZHONG R S, DONG X G. Water-salt balance and water environment forecast of Lake Bosten in Xinjiang[J]. Journal of Lake Sciences, 2008, 20(1):58-64. doi: 10.18307/2008.0109
[20] TANG X M, XIE G J, SHAO K Q, et al. Influence of salinity on the bacterial community composition in Lake Bosten,a large oligosaline lake in arid northwestern China[J]. Applied and Environmental Microbiology, 2012, 78(13):4748-4751.
doi: 10.1128/AEM.07806-11[21] 郭亮, 苏婧, 纪丹凤, 等. 基于GAM模型的太湖叶绿素a与营养盐相关性研究[J]. 环境工程技术学报, 2017, 7(5):565-572. GUO L, SU J, JI D F, et al. Relationship of chlorophyll-a and nutrients in Taihu Lake based on GAM model[J]. Journal of Environmental Engineering Technology, 2017, 7(5):565-572.
[22] XU H, PAERL H W, QIN B, et al. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu,China[J]. Environmental Science & Technology, 2015, 49(2):1051-1059.
doi: 10.1021/es503744q[23] 吴敬禄, 马龙, 曾海鳌. 新疆博斯腾湖水质水量及其演化特征分析[J]. 地理科学, 2013, 33(2):231-237.
doi: 10.13249/j.cnki.sgs.2013.02.231WU J L, MA L, ZENG H A. Water quality and quantity characteristics and its evolution in Lake Bosten,Xinjiang over the past 50 years[J]. Scientia Geographica Sinica, 2013, 33(2):231-237. doi: 10.13249/j.cnki.sgs.2013.02.231
[24] 李勇, 孙卫刚. 新疆博斯腾湖污染源调查分析[J]. 地下水, 2010, 32(4):177-179. [25] 高华中, 朱诚, 李宗尧. 开都河灌区灌溉引水对博斯腾湖面积影响的定量分析[J]. 自然资源学报, 2005, 20(4):502-507. GAO H Z, ZHU C, LI Z Y. Quantitative analysis of the impact of irrigation water from Kaidu River on the area change of Bosten Lake[J]. Journal of Natural Resources, 2005, 20(4):502-507.
[26] 赛·巴雅尔图, 陈敏鹏, 冯丽. 博斯腾湖流域农业面源污染现状分析[J]. 水资源保护, 2012, 28(2):25-29. SAI B Y E T, CHEN M P, FENG L. Agricultural non-point source pollution of Bosten Lake Basin[J]. Water Resources Protection, 2012, 28(2):25-29.
-
期刊类型引用(4)
1. 郑刚,姚力,章文亭. 博斯腾湖COD_(Cr)污染现状及影响因素分析. 新疆环境保护. 2024(02): 11-18 . 百度学术
2. 宋昱锋,陈伏龙,陈红波,丁占涛,吴国洋,罗鑫,黄森. 基于BCC-CSM2-MR模式的开都河流域未来气温降水趋势分析及径流模拟. 水电能源科学. 2024(09): 1-5 . 百度学术
3. 李茹霞,迪丽努尔·阿吉,赛米热·托合提,王晓兰,张敏. 开都河水质时空分布特征研究. 海洋湖沼通报. 2023(03): 116-123 . 百度学术
4. 璩继立,帕坦木汗·阿卜力米提,刘红梅,宁作君. 环塔里木西侧盐渍土分布特征的比较研究及其成因分析. 喀什大学学报. 2022(03): 53-57 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 450
- HTML全文浏览量: 112
- PDF下载量: 57
- 被引次数: 5