邛海流域设施葡萄园土壤养分与地下水污染特征研究

Characteristics of soil nutrients and groundwater pollution of greenhouse vineyards in Qionghai Lake Basin

  • 摘要: 为揭示邛海流域设施葡萄园土壤养分的累积状况与地下水的污染特征,选取邛海北岸典型设施葡萄种植区为研究区域,采集不同种植年限的设施葡萄园和普通农田表层土壤以及相应区域地下水进行分析,并采用相关性分析方法探讨葡萄园表层土壤中氮、磷浓度,土壤理化性质与种植年限之间的关系。结果表明:设施葡萄园表层土壤中速效氮浓度平均为0.702 g/kg,速效磷浓度平均为0.135 g/kg,分别是背景(未耕作)土壤的8.2倍和6.5倍;土壤中总氮和总磷浓度与种植年限呈显著正相关,氮、磷养分会随着种植年限的增加在土壤中累积,且由于种植过程中磷肥的长期大量施用,土壤中磷素累积显著;设施葡萄园土壤pH与其养分浓度呈显著负相关,土壤电导率与其养分浓度呈显著正相关,氮、磷肥料的大量施用会加重土壤的酸化和盐渍化程度;设施葡萄园土壤养分淋失主要以硝态氮为主,地下水中硝酸盐浓度随着种植年限的增加而升高,对邛海水质存在潜在污染风险。

     

    Abstract: A typical grape-planting area on the north bank of Qionghai Lake was selected as the research area to reveal the accumulation of nutrients in soil and the pollution characteristics of groundwater in greenhouse vineyards in Qionghai Lake Basin. Surface soil of the greenhouse vineyards and ordinary farmland with different planting years as well as the groundwater in the corresponding area were collected for analysis. The correlation analysis method was applied to explore the relationship between the content of nitrogen and phosphorus in the top soil of vineyards, the physical and chemical properties of soil, and the planting years. The results demonstrated that the average contents of available nitrogen (AN) and available phosphorus (AP) in the surface soil of the study area were 0.702 and 0.135 g/kg, which were 8.2 and 6.5 times of the background (uncultivated) soil, respectively. There was a significant positive correlation between total nitrogen (TN), total phosphorus (TP) concentration and planting years. Both nitrogen and phosphorus accumulated in soil with the increase of planting years, and the accumulation of phosphorus was severe, which was related to the long-term application of phosphorus fertilizer in the process of planting. Meanwhile, there existed a significantly negative correlation between pH and nutrient content in soil of the facility vineyards, and a significantly positive correlation between the soil electrical conductivity (EC) with its nutrient concentration. The large application of nitrogen and phosphorus fertilizer would aggravate the degree of soil acidification and salinization. The nutrient leaching loss in the soil of the facility vineyards was mainly nitrate nitrogen, and the nitrate content in the groundwater increased with the increase of planting years, which posed a potential risk of pollution to the quality of Qionghai Lake.

     

/

返回文章
返回