留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

昆明市主城区热环境效应及影响因素分析

何咪 何萍 赵琳 王振吉

何咪,何萍,赵琳,等.昆明市主城区热环境效应及影响因素分析[J].环境工程技术学报,2023,13(1):403-412 doi: 10.12153/j.issn.1674-991X.20210557
引用本文: 何咪,何萍,赵琳,等.昆明市主城区热环境效应及影响因素分析[J].环境工程技术学报,2023,13(1):403-412 doi: 10.12153/j.issn.1674-991X.20210557
HE M,HE P,ZHAO L,et al.Analysis of thermal environment effect and its influencing factors in the main urban area of Kunming[J].Journal of Environmental Engineering Technology,2023,13(1):403-412 doi: 10.12153/j.issn.1674-991X.20210557
Citation: HE M,HE P,ZHAO L,et al.Analysis of thermal environment effect and its influencing factors in the main urban area of Kunming[J].Journal of Environmental Engineering Technology,2023,13(1):403-412 doi: 10.12153/j.issn.1674-991X.20210557

昆明市主城区热环境效应及影响因素分析

doi: 10.12153/j.issn.1674-991X.20210557
基金项目: 国家自然科学基金项目(41465001);广西高校中青年教师科研基础能力提升项目(2021KY0737)
详细信息
    作者简介:

    何咪(1997—),女,硕士研究生,主要从事气候环境监测研究,1448084782@qq.com

    通讯作者:

    何萍(1965—),女,教授,主要从事气象、气候与自然地理综合研究,heping@cxtc.edu.cn

  • 中图分类号: X57

Analysis of thermal environment effect and its influencing factors in the main urban area of Kunming

  • 摘要:

    以昆明市主城区为研究对象,根据2000年、2010年和2020年3期Landsat TM/OLI遥感影像,反演3个时期的地表温度,采用标准差椭圆分析热环境效应的时空演变,并使用地理探测器探讨热环境效应的影响因素。结果表明:近20 年来,昆明市主城区热岛区集中分布在城镇建设密集区域,热环境方向主轴由东北—西南走向转为西北—东南走向;前期热环境重心向西北方向偏转了57.5°,偏移2.47 km,后期向西北方向偏转24.25°,偏移0.86 km;有极低温区向低温区、较低温区转变,较高温区与高温区向极高温区转变的态势,其中,官渡区的热环境效应增强趋势最显著;建筑用地和植被覆盖度对地表温度产生的影响力最大,建筑用地与高程交互作用时会增加对地表温度的影响力,水体与建筑用地或不透水面的交互作用减弱了水体对热环境效应的缓解作用。

     

  • 图  1  研究区土地利用类型

    Figure  1.  Land use types in the study area

    图  2  昆明市主城区地表温度等级

    Figure  2.  Surface temperature grade of the main urban area of Kunming

    图  3  2000—2020年昆明主城区热环境方向变化与重心迁移

    Figure  3.  Change of thermal environment direction and migration of center in the main urban area of Kunming from 2000 to 2020

    图  4  昆明市主城区各行政区热岛区面积占比

    Figure  4.  Proportion of heat island area of each administrative region in the main urban area of Kunming

    图  5  昆明市主城区热环境影响因素空间分布

    Figure  5.  Spatial distribution of influencing factors of thermal environment in the main urban area of Kunming

    表  1  数据来源

    Table  1.   Data sources

    数据名称时间来源用途
    Landsat TM/OLI2000年2月12日
    2010年2月7日
    2020年1月18日
    地理空间数据云(http://www.gscloud)反演地表温度与获取地表信息
    DEM数据2020年地理空间数据云(http://www.gscloud)获取高程与坡度信息
    土地利用类型图2020年全球地理信息公共产品(http://globeland30.org/)计算景观格局指数
    POI指数2020年中国科学院资源环境科学与数据中心
    https://www.resdc.cn/
    计算社会经济活动指数
    下载: 导出CSV

    表  2  昆明市主城区地表温度等级划分

    Table  2.   Grade classification of surface temperature in the main urban area of Kunming

    温度等级T
    极低温区T<u−2.5std
    低温区u−2.5std≤T<u−1.5std
    较低温区u−1.5std≤T<u−0.5std
    中温区u−0.5std≤T<u+0.5std
    较高温区u+0.5std≤T<u+1.5std
    高温区u+1.5std≤T<u+2.5std
    极高温区Tu+2.5std
      注:T为研究区域的地表温度;u为地表温度的平均值;std为标准差。
    下载: 导出CSV

    表  3  2个影响因子对因变量交互作用的类型

    Table  3.   Types of the interaction of two influencing factors on dependent variables

    判断依据交互作用
    q(x1x2)<min[q(x1),q(x2)]非线性减弱
    min(q(x1),q(x2))<q(x1x2)<max[q(x1),q(x2)]单因子非线性减弱
    q(x1x2)> max[q(x1),q(x2)]双因子增强
    q(x1x2)= q(x1)+ q(x2)独立
    q(x1x2)> q(x1)+ q(x2)非线性增强
    下载: 导出CSV

    表  4  2000—2020年昆明市主城区地表温度等级面积及占比

    Table  4.   Area and proportion of surface temperature grades in the main urban area of Kunming from 2000 to 2020

    温度等级2000年2010年2020年
    面积/km2占比/%面积/km2占比/%面积/km2占比/%
    极低温区30.061.130.000.006.890.26
    低温区251.889.51264.739.92273.2310.24
    较低温区413.0015.59567.7321.27537.6020.14
    中温区1 061.8640.78964.1436.12945.1435.41
    较高温区810.9630.61704.3226.38768.3228.78
    高温区97.233.67161.966.07129.204.84
    极高温区4.510.176.620.259.110.34
    下载: 导出CSV

    表  5  昆明市主城区各行政区地表温度等级面积统计

    Table  5.   Statistics table of heat island area of each administrative region in the main urban area of Kunming km2 

    行政区2000年2010年2020年
    较高温区高温区
    极高温区较高温区高温区
    极高温区较高温区高温区
    极高温区
    呈贡区232.6535.600.72179.3641.480.62191.7428.711.20
    官渡区204.135.850.08198.5843.771.50226.3532.772.02
    盘龙区80.126.590.1170.1716.090.6568.3110.240.54
    五华区114.3122.001.7888.3225.181.70103.7124.332.76
    西山区179.2026.011.68167.5134.031.96177.5831.532.34
    下载: 导出CSV

    表  6  昆明市主城区地表温度与影响因子的相关性

    Table  6.   Correlation between surface temperature and influencing factors in the main urban area of Kunming

    项目FVCMNDWINDBINDISICOHESIONDIVISIONSHDISHEI高程坡度POI
    相关系数−0.033 7−0.360 20.596 7−0.197 70.085 90.200 30.217 80.200 3−0.037 60.000 60.066 9
    显著水平0.000 00.014 90.000 00.000 00.000 00.000 00.000 00.000 00.613 20.000 00.000 0
    下载: 导出CSV

    表  7  影响因子对昆明市主城区地表温度的影响力

    Table  7.   Influence of influencing factors on the surface temperature in the main urban area of Kunming

    项目FVCMNDWINDBINDISICOHESIONDIVISIONSHDISHEI高程坡度POI
    解释力0.349 20.264 50.372 50.210 80.110 80.110 80.110 20.110 80.142 50.063 30.010 9
    显著水平0.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.005 01.000 0
    下载: 导出CSV

    表  8  影响因子的交互作用结果

    Table  8.   Results of the interaction of influencing factors

    交互类型交互影响力交互作用交互类型交互影响力交互作用
    FVC∩MNDWI0.42双因子增强NDBI∩坡度0.44非线性增强
    FVC∩NDBI0.42双因子增强NDISI∩COHESION0.28双因子增强
    FVC∩NDISI0.37双因子增强NDISI∩DIVISION0.28双因子增强
    FVC∩COHESION0.45双因子增强NDISI∩SHDI0.28双因子增强
    FVC∩DIVISION0.45双因子增强NDISI∩SHEI0.28双因子增强
    FVC∩SHDI0.44双因子增强NDISI∩高程0.37非线性增强
    FVC∩SHEI0.45双因子增强NDISI∩坡度0.30非线性增强
    FVC∩高程0.49双因子增强COHESION∩DIVISION0.11双因子增强
    FVC∩坡度0.42非线性增强COHESION∩SHDI0.11双因子增强
    MNDWI∩NDBI0.28单因子非线性减弱COHESION∩SHEI0.11双因子增强
    MNDWI∩NDISI0.23单因子非线性减弱COHESION∩高程0.30非线性增强
    MNDWI∩COHESION0.34双因子增强COHESION∩坡度0.18非线性增强
    MNDWI∩DIVISION0.34双因子增强DIVISION∩SHDI0.11双因子增强
    MNDWI∩SHDI0.34双因子增强DIVISION∩SHEI0.11双因子增强
    MNDWI∩SHEI0.34双因子增强DIVISION∩高程0.30非线性增强
    MNDWI∩高程0.47非线性增强DIVISION∩坡度0.18非线性增强
    MNDWI∩坡度0.38非线性增强SHDI∩SHEI0.11双因子增强
    NDBI∩NDISI0.38双因子增强SHDI∩高程0.30非线性增强
    NDBI∩COHESION0.45双因子增强SHDI∩坡度0.17双因子增强
    NDBI∩DIVISION0.45双因子增强SHEI∩高程0.30非线性增强
    NDBI∩SHDI0.45双因子增强SHEI∩坡度0.18非线性增强
    NDBI∩SHEI0.45双因子增强SHEI∩坡度0.17双因子增强
    NDBI∩高程0.52非线性增强
    下载: 导出CSV
  • [1] 岳文泽, 徐建华, 徐丽华.基于遥感影像的城市土地利用生态环境效应研究: 以城市热环境和植被指数为例[J]. 生态学报,2006,26(5):1450-1460. doi: 10.3321/j.issn:1000-0933.2006.05.021

    YUE W Z, XU J H, XU L H. An analysis on eco-environmental effect of urban land use based on remote sensing images: a case study of urban thermal environment and NDVI[J]. Acta Ecologica Sinica,2006,26(5):1450-1460. doi: 10.3321/j.issn:1000-0933.2006.05.021
    [2] 孙翼. 城市扩展对城市热环境影响研究: 以武汉市为例[D]. 武汉: 湖北工业大学, 2016.
    [3] 肖荣波, 欧阳志云, 李伟峰, 等.城市热岛的生态环境效应[J]. 生态学报,2005,25(8):2055-2060. doi: 10.3321/j.issn:1000-0933.2005.08.032

    XIAO R B, OUYANG Z Y, LI W F, et al. A review of the eco-environmental consequences of urban heat Islands[J]. Acta Ecologica Sinica,2005,25(8):2055-2060. doi: 10.3321/j.issn:1000-0933.2005.08.032
    [4] YUE W Z, LIU Y, FAN P L, et al. Assessing spatial pattern of urban thermal environment in Shanghai, China[J]. Stochastic Environmental Research and Risk Assessment,2012,26(7):899-911. doi: 10.1007/s00477-012-0638-1
    [5] 熊鹰, 章芳.基于多源数据的长沙市人居热环境效应及其影响因素分析[J]. 地理学报,2020,75(11):2443-2458. doi: 10.11821/dlxb202011013

    XIONG Y, ZHANG F. Thermal environment effects of urban human settlements and influencing factors based on multi-source data: a case study of Changsha City[J]. Acta Geographica Sinica,2020,75(11):2443-2458. doi: 10.11821/dlxb202011013
    [6] JOHNSON H, KOVATS R S, MCGREGOR G, et al. The impact of the 2003 heat wave on daily mortality in England and Wales and the use of rapid weekly mortality estimates[J]. European Communicable Disease Bulletin,2005,10(7):168-171.
    [7] 蒲禹君, 蒲金涌.西北中等城市热岛效应变化特征: 以天水市为例[J]. 环境工程技术学报,2011,1(5):376-382. doi: 10.3969/j.issn.1674-991X.2011.05.063

    PU Y J, PU J Y. Variation of urban heat island characteristics at medium-sized city in the northwest: a case of Tianshui[J]. Journal of Environmental Engineering Technology,2011,1(5):376-382. doi: 10.3969/j.issn.1674-991X.2011.05.063
    [8] 林中立, 徐涵秋, 陈弘.我国东部沿海三大城市群热岛变化及其与城市群发展的关系[J]. 环境科学研究,2018,31(10):1695-1704.

    LIN Z L, XU H Q, CHEN H. Urban heat island change and its relationship to the urbanization of three major urban agglomerations in China's eastern coastal region[J]. Research of Environmental Sciences,2018,31(10):1695-1704.
    [9] 陈燕红, 蔡芫镔, 仝川.福州主城区绿色空间不同演化模式对地表温度扰动的影响[J]. 环境科学研究,2020,33(4):995-1004.

    CHEN Y H, CAI Y B, TONG C. Effects of different urban green space development on surface temperature in Fuzhou City[J]. Research of Environmental Sciences,2020,33(4):995-1004.
    [10] 张晓东, 赵银鑫, 褚小东, 等.基于遥感的银川市城区热环境及其影响因素的时空演变特征[J]. 水土保持研究,2020,27(6):180-187.

    ZHANG X D, ZHAO Y X, CHU X D, et al. Spatial and temporal evolution characteristics of thermal environment and its influencing factors in urban area of Yinchuan City based on remote sensing[J]. Research of Soil and Water Conservation,2020,27(6):180-187.
    [11] 韩贵锋, 颜文涛, 赵珂, 等.近20年来重庆市主城区地表热岛的时空变化[J]. 环境科学研究,2012,25(6):615-621.

    HAN G F, YAN W T, ZHAO K, et al. Spatial-temporal changes of surface heat island in the central area of Chongqing over the past 20 years[J]. Research of Environmental Sciences,2012,25(6):615-621.
    [12] 刘丽香, 杨凯, 叶家慧, 等.雄安新区城市热岛效应的空间异质性[J]. 环境工程技术学报,2021,11(3):546-553. doi: 10.12153/j.issn.1674-991X.20200194

    LIU L X, YANG K, YE J H, et al. Spatial variation of urban heat island effect in Xiongan New Area[J]. Journal of Environmental Engineering Technology,2021,11(3):546-553. doi: 10.12153/j.issn.1674-991X.20200194
    [13] WANG M Y, XU H Q. The impact of building height on urban thermal environment in summer: a case study of Chinese megacities[J]. PLoS One,2021,16(4):0247786.
    [14] ZHAO D, LEI Q H, SHI Y J, et al. Role of species and planting configuration on transpiration and microclimate for urban trees[J]. Forests,2020,11(8):825. doi: 10.3390/f11080825
    [15] CHEN G W, WANG D Y, WANG Q, et al. Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage[J]. Science of the Total Environment,2020,726:138147. doi: 10.1016/j.scitotenv.2020.138147
    [16] 沈中健, 曾坚.闽南三市城镇发展与地表温度的空间关系[J]. 地理学报,2021,76(3):566-583. doi: 10.11821/dlxb202103006

    SHEN Z J, ZENG J. Spatial relationship of urban development to land surface temperature in three cities of southern Fujian[J]. Acta Geographica Sinica,2021,76(3):566-583. doi: 10.11821/dlxb202103006
    [17] 赵禾苗, 阿里木江·卡斯木.乌鲁木齐市主城区热环境与下垫面关系研究[J]. 测绘科学,2021,46(8):179-187.

    ZHAO H M, ALIMUJIANG K. Study on the relationship between thermal environment and underlying surface in the main urban area of Urümqi[J]. Science of Surveying and Mapping,2021,46(8):179-187.
    [18] MA X L, PENG S Y. Assessing the quantitative relationships between the impervious surface area and surface heat island effect during urban expansion[J]. PeerJ,2021,9:e11854. doi: 10.7717/peerj.11854
    [19] 杨云源, 史正涛, 何萍.基于多源数据的昆明市主城区建筑区热环境分析[J]. 热带地理,2013,33(1):21-27.

    YANG Y Y, SHI Z T, HE P. Analysis of thermal environment of the main urban area of Kunming based on multi-source data[J]. Tropical Geography,2013,33(1):21-27.
    [20] 李红, 高皜, 解韩玮.昆明市主城区热环境及其影响因素的时空演化特征[J]. 生态环境学报,2018,27(10):1916-1924.

    LI H, GAO H, XIE H W. Spatial and temporal evolution of thermal environment and its influencing factors in urban area of Kunming City[J]. Ecology and Environmental Sciences,2018,27(10):1916-1924.
    [21] 章皖秋, 袁华, 岳彩荣, 等.昆明中心城区地表温度反演及与土地覆盖关系分析[J]. 西南林业大学学报,2016,36(5):130-137.

    ZHANG W Q, YUAN H, YUE C R, et al. The retrieval of land surface temperature of Kunming urban area and its relationships with landscape compositions[J]. Journal of Southwest Forestry University,2016,36(5):130-137.
    [22] 刘鑫, 甘淑.基于Landsat数据的昆明地区热岛效应分析[J]. 科学技术与工程,2011,11(13):3009-3013. doi: 10.3969/j.issn.1671-1815.2011.13.028

    LIU X, GAN S. Analysis on the urban heat island effect of Kunming area based on landsat data[J]. Science Technology and Engineering,2011,11(13):3009-3013. doi: 10.3969/j.issn.1671-1815.2011.13.028
    [23] 杨树文, 董玉森, 罗小波. 遥感数字图像处理与分析: ENVI5.x实验教程[M]. 北京: 电子工业出版社, 2015.
    [24] 韩朗逸. 基于POI大数据的天津市城市功能分区识别研究[C]//2017中国城市规划年会论文集. 东莞, 2017: 124-132.
    [25] 赵璐, 赵作权.基于特征椭圆的中国经济空间分异研究[J]. 地理科学,2014,34(8):979-986.

    ZHAO L, ZHAO Z Q. Projecting the spatial variation of economic based on the specific ellipses in China[J]. Scientia Geographica Sinica,2014,34(8):979-986.
    [26] 王劲峰, 徐成东.地理探测器: 原理与展望[J]. 地理学报,2017,72(1):116-134. doi: 10.11821/dlxb201701010

    WANG J F, XU C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116-134. ⊕ doi: 10.11821/dlxb201701010
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  208
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09

目录

    /

    返回文章
    返回