大义山东南部土壤重金属分布特征及其风险评价

Heavy metal distribution characteristics of soils in southeastern Dayi Mountain and its risk evaluation

  • 摘要: 为探明矿产开采对土壤生态环境的影响,采集大义山岩体东南部土壤样品分析其重金属元素Cu、Pb、Zn、Cr、Ni、Cd、As和Hg浓度;综合利用单因子指数、污染负荷指数和潜在生态危害指数法评估研究区土壤的污染状况与生态风险。结果表明:As、Cd、Pb、Zn和Cu平均浓度分别超出GB 15618—2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》(pH>7.5)标准限值119.70、47.33、6.18、4.67和4.43倍;单因子指数从大到小依次为As>Cd>Pb>Zn>Cu>Cr>Ni>Hg,其中,As、Cd、Pb、Zn和Cu属于重度污染;单项潜在风险指数从大到小依次为Cd>As>Pb>Cu>Zn>Hg>Ni>Cr,土壤综合潜在生态风险指数平均值为2 680.40,属于极强生态风险水平。统计显示,Cu、Zn、Cd、As富集中心位于矿区,Cr、Pb、Ni富集于乡村、矿业生产区等人口活动区域,Hg元素无明显分布规律。相关性与主成分分析表明,土壤中Cu、Zn、Cd、As和Pb、Cr、Ni异常富集分别与矿业开采和人类活动有关,而Hg异常富集则主要源自母质风化与成土作用。

     

    Abstract: In order to investigate the impact of mineral mining on soil ecology, soil samples were collected from the southeastern part of Dayi Mountain rock mass to analyze the concentrations of heavy metals Cu, Pb, Zn, Cr, Ni, Cd, As and Hg. The single-factor index, pollution load index and potential ecological hazard index methods were used to evaluate the pollution status and ecological risk of soil in mining areas. The results showed that the average concentrations of As, Cd, Pb, Zn and Cu exceeded the standard limits of GB 15618-2018 (Soil Environmental Quality Standard for Soil Pollution Risk Control of Agricultural Land (Trial)) (pH>7.5) by 119.70, 47.33, 6.18, 4.67 and 4.43 times, respectively. The single factor index was As>Cd>Pb>Zn>Cu>Cr>Ni>Hg in descending order, and As, Cd, Pb, Zn and Cu were heavily polluted. The individual potential risk indices were Cd>As>Pb>Cu>Zn>Hg>Ni>Cr in descending order, and the average soil RI was 2 680.40, which was a very strong ecological risk level. The statistics showed that the enrichment centers of Cu, Zn, Cd and As were located in mining areas, Cr, Pb and Ni were enriched in villages, mining production areas and other population activity areas, and there was no obvious distribution pattern of Hg element. The correlation and principal component analysis showed that the abnormal enrichment of Cu, Zn, Cd, As, Pb, Cr and Ni in soils was related to mining and human activities, respectively, while the abnormal enrichment of Hg mainly originated from parent material weathering and soil formation.

     

/

返回文章
返回