北京市城市生活垃圾处理温室气体排放特征及减排策略

Greenhouse gas emission characteristics and emission reduction strategies of municipal solid waste treatment in Beijing

  • 摘要: 根据《IPCC国家温室气体清单指南》和《省级温室气体清单编制指南》方法,建立北京市3种生活垃圾处理方式温室气体排放清单,测算2010—2019年不同生活垃圾处理方式下温室气体CH4、CO2、N2O排放量,分析CO2排放量随时间变化特征,并基于此提出碳减排策略。结果表明:1)2010—2019年北京市生活垃圾处理温室气体的排放量总体呈先增后减的趋势,且变动幅度减缓,2019年达到最低水平,这主要与近年来北京市生活垃圾处理方式从以卫生填埋为主转变为以焚烧为主有关。2)2018年北京市生活垃圾焚烧量已超过填埋量,而垃圾焚烧处理CO2排放量远低于填埋处理,表明焚烧处理方式CO2排放强度低于填埋处理。3)生活垃圾处理温室气体排放量与垃圾处理方式及处理量密切相关,随着生活垃圾产生量的日益增加,建议在生活垃圾管理全过程加强垃圾精细化分类,推进源头减量;合理开展垃圾处理设施的建设,优化垃圾收运系统,防止垃圾处理二次污染,探索适合我国城市生活垃圾处理低碳优化模式。

     

    Abstract: Guided by IPCC Guidelines for National Greenhouse Gas Inventories and Guidelines for the Preparation of Provincial Greenhouse Gas List, the greenhouse gas (GHG) emission list of three municipal solid waste (MSW) treatment methods in Beijing was established, the GHG emissions of CH4, CO2 and N2O under different MSW treatment methods in 2010-2019 were calculated, the variation characteristics of CO2 emissions over time were analyzed, and carbon emission reduction strategies were put forward. The results showed that: 1) From 2010 to 2019, the GHG emissions from MSW treatment in Beijing generally increased first and then reduced, and the change range had slowed down. In 2019, it reached the lowest level in 10 years, which was mainly related to the change of waste treatment from landfill to incineration in Beijing in recent years. 2) In 2018, the incineration amount of MSW exceeded the landfill amount in Beijing, and the CO2 emissions of MSW incineration treatment were much lower than that of landfill treatment, indicating that the CO2 emission intensity of incineration treatment was lower than that of landfill treatment. 3) The GHG emission of MSW treatment was closely related to the garbage treatment methods and treatment amount. With the increasing production of MSW, it was suggested to strengthen waste fine classification in the whole process of MSW management and promote source reduction, carry out the construction of waste treatment facilities reasonably, optimize the waste collection and transportation system, prevent the secondary pollution of waste treatment, and explore a low-carbon optimization model suitable for China's MSW treatment.

     

/

返回文章
返回