基于CadR的镉生物传感器的构建与优化

Construction and optimization of cadmium-responsive bacterial biosensor based on CadR

  • 摘要: 以镉调控蛋白(cadmium resistance protein, CadR)为检测元件、绿色荧光蛋白为报告元件构建镉离子细菌生物传感器检测水体样品中的重金属镉,通过单因素试验和正交试验对检测条件进行优化以提升传感器的相对荧光强度,基于最优组合使用所构建的镉细菌生物传感器对加标长江水样进行检测。结果表明:所构建的重金属镉细菌生物传感器在0~200 μg/L浓度范围内对镉的荧光响应符合剂量依赖效应;单因素试验结果表明,温度、pH、诱导时间以及阳离子对镉生物传感器的灵敏度有显著影响,而通过改变不同阴离子配体对检测结果并未产生显著影响;正交试验优化结果显示,镉细菌生物传感器的最优检测条件组合为:温度为37 ℃,pH为7,诱导时间为120 min,添加终浓度为50 μg/L的Mg2+,在此条件下传感器响应镉的相对荧光强度相较于优化前增强了1.6倍;使用该传感器对加标长江水样检测结果显示,其对于0~500 μg/L的环境水样中的镉具有较好的检测能力,荧光响应最大值达到背景值的20倍。

     

    Abstract: Using cadmium responsive protein (CadR) as detection element and green fluorescent protein as report element, a cadmium-responsive bacterial biosensor was constructed to detect heavy metal cadmium in water samples. Single factor experiment and orthogonal test for detection condition optimization were applied to improve the relative fluorescence intensity of the biosensor. Finally, the spiked Yangtze River water samples was detected with the constructed cadmium-responsive bacterial biosensor based on the given optimal combination. The results showed that the fluorescence response of the biosensor to cadmium in the concentration range of 0-200 μg/L conformed to the dose-dependent effect. The single-factor test showed that temperature, pH, induction time and cations had significant effects on the sensitivity of cadmium-responsive biosensor, while different anion ligands had no significant effect on the detection results. The orthogonal test showed that the optimal detection conditions for cadmium-responsive bacteria biosensor were as follows: temperature 37 ℃, pH 7, induction time 120 min, and adding Mg2+ with final concentration of 50 μg/L. The verifying experiment indicated that under the optimal combination condition, the fluorescence response of the biosensor to the same concentration of cadmium increased by 1.6 times. The detection results of the spiked Yangtze River water samples by the sensors showed their high performance in detecting cadmium in 0-500 μg/L environmental water samples, and the maximum fluorescence output reached 20 times of the background.

     

/

返回文章
返回