Research advances in nano gas layers at the solid-liquid interface
-
摘要:
纳米气层是一种存在于固液界面上的准二维纳米结构的气态聚集体,科学家历经10多年的研究,其至今仍存在许多未解之谜。基于现有的研究成果,对纳米气层研究的主要问题及重要进展进行梳理与概述,主要介绍了纳米气层的基本性质,论述了纳米气层与纳米气泡的结构关系以及共存系统的动态平衡过程,归纳了该领域最新前沿研究所关注的重要科学谜题与主要挑战,如纳米气层的气相真实性、稳定性、结构有序性及气层的高效制备等问题,并提出了一些解决思路。在展现纳米气层过往研究历程的同时,也展望了未来纳米气层技术在一些重要界面反应中的可能应用。
Abstract:Nano gas layer, a quasi-two-dimensional gassy absorbate located at the liquid-solid interface, still remains many open questions after relevant investigations for more than ten years. Based on the existing studies, the essential puzzles and significant achievements of the nano gas layers were summarized. The properties of nano gas layer, the relationship between the nano gas layer and nanobubbles, and their dynamic equilibrium were illustrated. More importantly, the current attention and controversies in this field, such as the gas phase authenticity, stability, structural order, and efficient preparation of the nano gas layer were introduced and discussed. Some suggestions to resolve these challenges were presented. This review reported the past development of research of nano gas layers as well as the prospect of their potential applications in some important interfacial reactions in the future.
-
Key words:
- nano gas layer /
- atomic force microscope /
- nanobubbles /
- solid-liquid interface /
- graphite surface
-
图 1 石墨表面纳米气层及纳米气泡与气层共存物[4]
Figure 1. Nano gas layer on graphite surface and coexistence of nano bubble and gas layer
图 2 醇水替换前后探针与样品相互作用力曲线及示意[14]
Figure 2. Force curves and schematics of the tip interacted with samples before and after the ethanol-water exchange
图 3 含气量不同的水中探针靠近石墨表面过程中的力梯度与能量耗散[16]
Figure 3. The conservative force gradients and energy dissipation during the tip approach to the HOPG surface in water with different gas saturation
图 4 石墨材料HOPG表面纳米气泡与纳米气层的硬度信息[21]
Figure 4. Stiffness image of nanobubbles and nano gas layer on the HOPG surface
图 5 石墨表面纳米气层逐渐演变成纳米气泡过程[23]
Figure 5. The transformation from nano gas layers to nanobubbles on the HOPG surface
图 6 加热冷却过程中界面气态共存物的2种动态平衡演变 [24]
Figure 6. Two evolutions of dynamic equilibrium of the interfacial gas coexistence during heating and cooling
图 7 探针扰动界面气态结构(蓝色框内)对周边未受干扰的气态结构造成影响[34]
Figure 7. Effects of the gas domains violently disturbed by the tip on their undisturbed neighbors
图 8 塑料注射器进行替换后石墨表面产生的层状物[37]
Figure 8. The layers formed on the graphite surface after the exchange used plastic syringes
图 9 使用玻璃注射器注入气体过饱和水生成可用脱气水去除的纳米气层[41]
Figure 9. The removable nano gas layers were produced by using glass syringes to inject gas supersaturated water
图 10 模拟20与50 ℃时亲水、疏水界面上的气层形态及单位面积气流量[45]
Figure 10. The calculated shape and gas flux per unit area of nano gas layers on the hydrophilic or hydrophobic surface at 20 and 50 ℃
图 11 醇水替换后HOPG表面产生的多重气层[42]
Figure 11. Multiple gas layers on the HOPG surface after the ethanol-water exchange
-
[1] TAN B H, AN H J, OHL C D. Identifying surface-attached nanobubbles[J]. Current Opinion in Colloid & Interface Science,2021,53:101429. [2] THEODORAKIS P E, CHE Z Z. Surface nanobubbles: theory, simulation, and experiment: a review[J]. Advances in Colloid and Interface Science,2019,272:101995. doi: 10.1016/j.cis.2019.101995 [3] SEDDON J R T, LOHSE D. Nanobubbles and micropancakes: gaseous domains on immersed substrates[J]. Journal of Physics Condensed Matter:an Institute of Physics Journal,2011,23(13):133001. doi: 10.1088/0953-8984/23/13/133001 [4] ZHANG X H, ZHANG X D, SUN J L, et al. Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2007,23(4):1778-1783. doi: 10.1021/la062278w [5] BUSSE A, SANDHAM N D, MCHALE G, et al. Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface[J]. Journal of Fluid Mechanics,2013,727:488-508. doi: 10.1017/jfm.2013.284 [6] BALDWIN R L, ROSE G D. How the hydrophobic factor drives protein folding[J]. Proceedings of the National Academy of Sciences,2016,113(44):12462-12466. doi: 10.1073/pnas.1610541113 [7] FARHANG F, NGUYEN A V, SEWELL K B. Fundamental investigation of the effects of hydrophobic fumed silica on the formation of carbon dioxide gas hydrates[J]. Energy & Fuels,2014,28(11):7025-7037. [8] XU W W, LU Z Y, SUN X M, et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research,2018,51(7):1590-1598. doi: 10.1021/acs.accounts.8b00070 [9] YU S C, LI X J, LIU S, et al. Study on hydrophobicity loss of the gas diffusion layer in PEMFCs by electrochemical oxidation[J]. RSC Adv,2014,4(8):3852-3856. doi: 10.1039/C3RA45770B [10] ISRAELACHVILI J, PASHLEY R. The hydrophobic interaction is long range, decaying exponentially with distance[J]. Nature,1982,300(5890):341-342. doi: 10.1038/300341a0 [11] CHRISTENSON H K, CLAESSON P M. Cavitation and the interaction between macroscopic hydrophobic surfaces[J]. Science,1988,239(4838):390-392. doi: 10.1126/science.239.4838.390 [12] ISHIDA N, INOUE T, MIYAHARA M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy[J]. Langmuir,2000,16(16):6377-6380. doi: 10.1021/la000219r [13] LOU S T, OUYANG Z Q, ZHANG Y, et al. Nanobubbles on solid surface imaged by atomic force microscopy[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2000,18(5):2573. [14] PENG H, HAMPTON M A, NGUYEN A V. Nanobubbles do not sit alone at the solid-liquid interface[J]. Langmuir,2013,29(20):6123-6130. doi: 10.1021/la305138v [15] AZADI M, NGUYEN A V, YAKUBOV G E. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2015,31(6):1941-1949. doi: 10.1021/la504001z [16] SCHLESINGER I, SIVAN U. Three-dimensional characterization of layers of condensed gas molecules forming universally on hydrophobic surfaces[J]. Journal of the American Chemical Society,2018,140(33):10473-10481. doi: 10.1021/jacs.8b04815 [17] SEDDON J R T, KOOIJ E S, POELSEMA B, et al. Surface bubble nucleation stability[J]. Physical Review Letters,2011,106(5):056101. doi: 10.1103/PhysRevLett.106.056101 [18] ZHANG X H, MAEDA N. Interfacial gaseous states on crystalline surfaces[J]. The Journal of Physical Chemistry C,2011,115(3):736-743. doi: 10.1021/jp1097734 [19] ZHANG X H, MAEDA N, CRAIG V S J. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2006,22(11):5025-5035. doi: 10.1021/la0601814 [20] ZHANG X H, MAEDA N, HU J. Thermodynamic stability of interfacial gaseous states[J]. The Journal of Physical Chemistry B,2008,112(44):13671-13675. doi: 10.1021/jp807515f [21] ZHAO B Y, WANG X Y, SONG Y, et al. Stiffness and evolution of interfacial micropancakes revealed by AFM quantitative nanomechanical imaging[J]. Physical Chemistry Chemical Physics:PCCP,2015,17(20):13598-13605. doi: 10.1039/C5CP01366F [22] LI D Y, PAN Y L, ZHAO X Z, et al. Study on nanobubble-on-pancake objects forming at polystyrene/water interface[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2016,32(43):11256-11264. doi: 10.1021/acs.langmuir.6b01910 [23] ZHANG L J, ZHANG X H, FAN C H, et al. Nanoscale multiple gaseous layers on a hydrophobic surface[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2009,25(16):8860-8864. doi: 10.1021/la901620e [24] KIMURA R, TESHIMA H, LI Q Y, et al. Thermally induced mass transfer between nanobubbles and micropancakes[J]. International Journal of Heat and Mass Transfer,2021,181:122001. doi: 10.1016/j.ijheatmasstransfer.2021.122001 [25] LOHSE D, ZHANG X H. Surface nanobubbles and nanodroplets[J]. Reviews of Modern Physics,2015,87(3):981-1035. doi: 10.1103/RevModPhys.87.981 [26] CRAIG V S J. Very small bubbles at surfaces: the nanobubble puzzle[J]. Soft Matter,2011,7(1):40-48. doi: 10.1039/C0SM00558D [27] WANG Y L, LI X L, REN S, et al. Entrapment of interfacial nanobubbles on nano-structured surfaces[J]. Soft Matter,2017,13(32):5381-5388. doi: 10.1039/C7SM01205E [28] XU C L, PENG S H, QIAO G G, et al. Nanobubble formation on a warmer substrate[J]. Soft Matter,2014,10(39):7857-7864. doi: 10.1039/C4SM01025F [29] LOHSE D, ZHANG X H. Pinning and gas oversaturation imply stable single surface nanobubbles[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,2015,91(3):031003. doi: 10.1103/PhysRevE.91.031003 [30] LIU Y W, ZHANG X R. Nanobubble stability induced by contact line pinning[J]. The Journal of Chemical Physics,2013,138(1):014706. doi: 10.1063/1.4773249 [31] POPOV Y O. Evaporative deposition patterns: spatial dimensions of the deposit[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,2005,71(3):036313. doi: 10.1103/PhysRevE.71.036313 [32] BRENNER M P, LOHSE D. Dynamic equilibrium mechanism for surface nanobubble stabilization[J]. Physical Review Letters,2008,101(21):214505. doi: 10.1103/PhysRevLett.101.214505 [33] WEIJS J H, SNOEIJER J H, LOHSE D. Formation of surface nanobubbles and the universality of their contact angles: a molecular dynamics approach[J]. Physical Review Letters,2012,108(10):104501. doi: 10.1103/PhysRevLett.108.104501 [34] LI D Y, ZENG B L, WANG Y L. Probing the "gas tunnel" between neighboring nanobubbles[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2019,35(47):15029-15037. doi: 10.1021/acs.langmuir.9b02682 [35] MAHESHWARI S, van der HOEF M, RODRÍGUEZ RODRÍGUEZ J, et al. Leakiness of pinned neighboring surface nanobubbles induced by strong gas-surface interaction[J]. ACS Nano,2018,12(3):2603-2609. doi: 10.1021/acsnano.7b08614 [36] BERKELAAR R P, DIETRICH E, KIP G A, et al. Exposing nanobubble-like objects to a degassed environment[J]. Soft Matter,2014,10(27):4947-4955. doi: 10.1039/c4sm00316k [37] AN H J, LIU G M, CRAIG V S J. Wetting of nanophases: nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces[J]. Advances in Colloid and Interface Science,2015,222:9-17. doi: 10.1016/j.cis.2014.07.008 [38] GERMAN S R, WU X, AN H J, et al. Interfacial nanobubbles are leaky: permeability of the gas/water interface[J]. ACS Nano,2014,8(6):6193-6201. doi: 10.1021/nn5016049 [39] ZHOU L M, WANG X Y, SHIN H J, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society,2020,142(12):5583-5593. doi: 10.1021/jacs.9b11303 [40] AN H J, LIU G M, ATKIN R, et al. Surface nanobubbles in nonaqueous media: looking for nanobubbles in DMSO, formamide, propylene carbonate, ethylammonium nitrate, and propylammonium nitrate[J]. ACS Nano,2015,9(7):7596-7607. doi: 10.1021/acsnano.5b02915 [41] FANG H, QI J, WANG Y, et al. Interfacial micropancakes: gas or contaminations[J]. Langmuir,2022:Accepted. [42] TESHIMA H, TAKATA Y, TAKAHASHI K. Adsorbed gas layers limit the mobility of micropancakes[J]. Applied Physics Letters,2019,115(7):071603. doi: 10.1063/1.5113810 [43] ZHANG X H, CHAN D Y C, WANG D Y, et al. Stability of interfacial nanobubbles[J]. Langmuir,2013,29(4):1017-1023. doi: 10.1021/la303837c [44] QIAN J, CRAIG V S J, JEHANNIN M. Long-term stability of surface nanobubbles in undersaturated aqueous solution[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2019,35(3):718-728. doi: 10.1021/acs.langmuir.8b03487 [45] YASUI K, TUZIUTI T, KANEMATSU W, et al. Advanced dynamic-equilibrium model for a nanobubble and a micropancake on a hydrophobic or hydrophilic surface[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,2015,91(3):033008. doi: 10.1103/PhysRevE.91.033008 [46] NGUYEN N N, NGUYEN A V, STEEL K M, et al. Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles[J]. The Journal of Physical Chemistry C,2017,121(7):3830-3840. doi: 10.1021/acs.jpcc.6b07136 [47] UHLIG M R, BENAGLIA S, THAKKAR R, et al. Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces[J]. Nanoscale,2021,13(10):5275-5283. doi: 10.1039/D1NR00351H [48] AMANO K I, SUZUKI K, FUKUMA T, et al. The relationship between local liquid density and force applied on a tip of atomic force microscope: a theoretical analysis for simple liquids[J]. The Journal of Chemical Physics,2013,139(22):224710. doi: 10.1063/1.4839775 [49] LU Y H, YANG C W, HWANG I S. Molecular layer of gaslike domains at a hydrophobic-water interface observed by frequency-modulation atomic force microscopy[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2012,28(35):12691-12695. doi: 10.1021/la301671a [50] LU Y H, YANG C W, FANG C K, et al. Interface-induced ordering of gas molecules confined in a small space[J]. Scientific Reports,2014,4:7189. [51] TEMIRYAZEV A, FROLOV A, TEMIRYAZEVA M. Atomic-force microscopy study of self-assembled atmospheric contamination on graphene and graphite surfaces[J]. Carbon,2019,143:30-37. doi: 10.1016/j.carbon.2018.10.094 [52] CHEONG S I, KIM B, LEE H, et al. Physical adsorption of water-soluble polymers on hydrophobic polymeric membrane surfaces via salting-out effect[J]. Macromolecular Research,2013,21(6):629-635. doi: 10.1007/s13233-013-1075-9 [53] RORABECK K, ZHITOMIRSKY I. Salting-out aided dispersive extraction of Mn3O4 nanoparticles and carbon nanotubes for application in supercapacitors [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,618:126451. doi: 10.1016/j.colsurfa.2021.126451 [54] TU Z H, LIU P P, ZHANG X M, et al. Highly-selective separation of CO2 from N2 or CH4 in task-specific ionic liquid membranes: facilitated transport and salting-out effect [J]. Separation and Purification Technology,2021,254:117621. doi: 10.1016/j.seppur.2020.117621 [55] LIU J H, TAN Y M, WANG Y, et al. Stress corrosion cracking behavior of 310S in supercritical water with different oxygen concentrations[J]. Nuclear Science and Techniques,2018,29(5):1-7. [56] WANG K, JIANG L, YE X X, et al. Absorption effect of pure nickel on the corrosion behaviors of the GH3535 alloy in tellurium vapor[J]. Nuclear Science and Techniques,2021,32(12):1-12. [57] OU J F, FANG X Z, ZHAO W J, et al. Influence of hydrostatic pressure on the corrosion behavior of superhydrophobic surfaces on bare and oxidized aluminum substrates[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2018,34(20):5807-5812. doi: 10.1021/acs.langmuir.8b01100 [58] LIU T, CHEN S G, CHENG S, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochimica Acta,2007,52(28):8003-8007. doi: 10.1016/j.electacta.2007.06.072 [59] JEANTY P, SCHERER C, MAGORI E, et al. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes [J]. Journal of CO2 Utilization,2018,24:454-462. doi: 10.1016/j.jcou.2018.01.011 [60] YANG K L, KAS R, SMITH W A, et al. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction [J]. ACS Energy Letters,2021,6(1):33-40. doi: 10.1021/acsenergylett.0c02184 [61] WLODARCZYK R. Carbon-based materials for bipolar plates for low-temperatures PEM fuel cells: a review[J]. Functional Materials Letters,2019,12(2):1930001. ⊗ doi: 10.1142/S1793604719300019