MOFs在水处理应用领域研究的文献计量学分析

Bibliometric analysis of MOFs in the field of water treatment applications

  • 摘要: 金属有机框架(MOFs)材料具有比表面积大、孔隙率高,结构和功能可调等优异特性,在水处理领域应用广泛。为深入了解MOFs在水处理应用领域的研究热点和发展趋势,采用文献计量学方法,利用VOSviewer软件对Web of ScienceTM核心合集数据库中MOFs在水处理应用领域相关文献进行定量分析。结果表明:1995—2021年MOFs在水处理应用领域研究发文量共1 281篇,发文量总体呈逐年递增的趋势;中国是该研究领域发文量和总被引次数最高的国家,发文量达800篇,但篇均被引次数相对较低;Jhung S H是该领域最富有成效的作者,其发表的14篇论文总被引次数为1 657次。该领域研究热点为使用MOFs改性复合升级材料(如MOFs衍生碳、MOFs膜等)及运用吸附去除、催化降解等方式处理水中的染料、重金属离子等典型污染物,未来应注重低廉高效合成方法的探索,材料稳定性和可重复性的提升以及改性方式和污染物结构特性的构效关系,复合物或衍生物的作用机制等方面的研究。

     

    Abstract: Metal-organic frameworks (MOFs) are widely used in water treatment due to their excellent properties such as large specific surface area, high porosity, and tunable structure and function. In order to deeply understand the research hotspots and growing trends of MOFs in the field of water treatment applications, the bibliometrics method was used, and the VOSviewer software was used to quantitatively analyze the related papers of MOFs in the field of water treatment applications in the Web of ScienceTM core collection database. The results show that: from 1995 to 2021, MOFs published a total of 1 281 papers in the field of water treatment applications, and the number of papers generally increased year by year; China was the country with the highest total number of papers and total citations in this field, with a total of 800, but with relatively low citations per paper; Jhung S H is the most productive author in the field, with 14 published papers and a total of 1 657 citations. The research hotspot is the modification and compound of MOFs materials (such as MOFs-derived carbon, MOFs membrane, etc.), and the use of adsorption removal, catalytic degradation and other methods to treat typical pollution such as dyes and heavy metal ions in water. In the future, attention should be paid to the exploration of inexpensive and efficient synthesis methods, the improvement of material stability and reproducibility, the structure-activity relationship between modification methods and the structural characteristics of pollutants, and the study of the mechanism of action of complexes or derivatives.

     

/

返回文章
返回