东北山地山口湖生态系统的营养结构和演变趋势

Trophic structure and evolution trend of Lake Shankou ecosystem, in northeast China

  • 摘要: 为探究东北山地湖泊山口湖生态系统的食物网结构并预测更合理的生态管理方式,结合多元逐步回归分析探索了理化因子对山口湖初级生产力的影响,使用Ecopath模型对2014年山口湖生态系统数据进行建模,并利用Ecosim模型分析不同情景下浮游生物和主要鱼类自2014年开始未来20年的变化趋势,结合相关性分析探究山口湖未来的管理方式。结果表明:山口湖是磷限制型湖泊,水温和总磷对初级生产力的增加有促进作用。山口湖生态系统生物之间捕食关系复杂,能量流动集中在第Ⅱ营养级以上,关键种为“其他鱼类”功能组,山口湖Ecopath模型的Pedigree指数为0.537,可信度较高。浮游植物的生产率(PD/B)增加显著促进了鲫、鲤和鲢相对生物量的增加,PD/B每年下降超过5%时对上述3种鱼类相对生物量的影响不显著,鲢搜索率的增加会提高鲢对桡足类、枝角类和轮虫等浮游动物的捕食效率,通过营养级间联合作用导致浮游植物的相对生物量略微上升。结合情景分析和相关性分析发现,增加浮游植物的生物量会提高渔业产量,山口湖生态系统中鲢控藻效果不佳,要加强对外源营养盐的限制。

     

    Abstract: In order to explore the food web structure of Lake Shankou, an alpine lake in northeast China, and then predict a more reasonable ecological management mode for this ecosystem, the effects of physicochemical factors on primary production (PP) of Lake Shankou were identified through multivariate stepwise regression analysis. Ecosystem data of Lake Shankou from 2014 were used for Ecopath modeling, and the Ecosim model was applied to predict the succession trend of plankton and major fish species in the next 20 years (since 2014) under different scenarios. The future management modes of Lake Shankou were also explored based on correlation analysis. The results showed that Lake Shankou was a phosphorus-limited lake, and the PP of this ecosystem was positively correlated with water temperature and total phosphorus. Complex predator-prey relationships were observed in Lake Shankou ecosystem. Most energy flows of this ecosystem were concentrated on trophic level II or above, and the keystone species was the "other fish" function group. The results of the Ecopath modeling were highly reliable according to the Pedigree index (0.537). The increase in production rate (Production/Biomass, PD/B) of phytoplankton significantly promoted the relative biomass increase of crucian carp (Carassius auratus), common carp (Cyprinus carpio), and silver carp (Hypophthalmichthys molitrix). However, this promotion effect was not significant when PD/B of phytoplankton decreased by more than 5% annually. The increasing search rate of Hypophthalmichthys molitrix would enhance its predatory efficiency to zooplankton (i.e. copepod, cladocera, and rotifer), and result in a slight increase in the relative biomass of phytoplankton via trophic cascade effects. Combined with scenario analysis and correlation analysis, the elevation of phytoplankton biomass would increase fishery production, and silver carp control for controlling algae was not effective in Lake Shankou. The controlling of exogenous nutrient input was more important in future ecosystem management.

     

/

返回文章
返回