亭式核酸采样环境飞沫传播风险影响因素研究

Factors influencing risk of droplet transmission in pavilion nucleic acid sampling environment

  • 摘要: 为探究核酸采样环境中飞沫的传播风险,采用RNG k-ε(增强壁面模型)、DPM(分散相模型)和DRW(随机游走)模型,应用田口实验法对亭式核酸采样环境中飞沫传播过程及其影响因素进行研究,分析了飞沫喷射速度、气流组织形式及新风速度等因素对飞沫传播特性的影响。研究发现:气流组织形式是影响飞沫传播的主要因素,采用上进下出形式并将最大风速控制在1 m/s左右时能在保证人体热舒适感前提下有效降低飞沫传播风险;随着时间的延长飞沫浓度呈减小趋势,新风速度越大高浓度飞沫持续时间越短,20 s时呼吸区域飞沫浓度仅为极限飞沫浓度的7.7%,在保证效率的前提下应尽快完成采样并适当延长采样时间间隔至20 s以上,以降低传播风险。

     

    Abstract: In order to explore the risk of droplet transmission in the nucleic acid sampling environment, the RNG k-ε, DPM and DRW models were adopted to study the droplet transmission process and influencing factors in the nucleic acid sampling pavilion on the basis of Taguchi experiment. The effects of initial droplet speed, airflow organization and fresh vent velocity on the characteristics of droplet transmission were analyzed. It was found that the airflow organization was the principal factor of the droplet transmission, and the up-in and down-out ventilation mode with the maximum ventilating speed of 1 m/s could effectively reduce the risk of droplet transmission under the premise of thermal comfort of the body. The droplet concentration tended to decrease as times went on, the higher the fresh vent speed, the shorter the duration of high-concentration of droplets, and the concentration of droplets dropped to below 7.7% of the limit droplet concentration in the respiratory area after 20 s. With the consideration of efficiency, sampling should be completed as soon as possible and the sampling interval should be extended to more than 20 s to reduce the risk of transmission.

     

/

返回文章
返回