Abstract:
In order to explore the risk of droplet transmission in the nucleic acid sampling environment, the RNG k-ε, DPM and DRW models were adopted to study the droplet transmission process and influencing factors in the nucleic acid sampling pavilion on the basis of Taguchi experiment. The effects of initial droplet speed, airflow organization and fresh vent velocity on the characteristics of droplet transmission were analyzed. It was found that the airflow organization was the principal factor of the droplet transmission, and the up-in and down-out ventilation mode with the maximum ventilating speed of 1 m/s could effectively reduce the risk of droplet transmission under the premise of thermal comfort of the body. The droplet concentration tended to decrease as times went on, the higher the fresh vent speed, the shorter the duration of high-concentration of droplets, and the concentration of droplets dropped to below 7.7% of the limit droplet concentration in the respiratory area after 20 s. With the consideration of efficiency, sampling should be completed as soon as possible and the sampling interval should be extended to more than 20 s to reduce the risk of transmission.