一种固定化生物填料的制备及应用

Preparation and application of an immobilized bio-filler

  • 摘要: 采用固定化技术,以聚乙烯醇(PVA)、海藻酸钠(SA)联合构筑凝胶骨架,引入活性炭(AC)、CaCO3和复合菌粉制备一种固定化生物填料(BM填料),对添加到BM填料中的AC进行粒径优化;以乙苯作为目标污染物,考察装填该填料的生物滴滤塔(BTF)对其去除效果。结果表明:当添加的AC为100目时,BM填料的比表面积达到57.46 m2/g,机械强度最高,对乙苯的去除效果最好。理化性质分析表明,该填料内部为致密的三维网状结构,具有较好的亲水性与吸附性,表面存在大量—OH、—COO等亲水基团,相同条件下对乙苯吸附量是聚氨酯海绵填料(PU填料)的2.9倍。同时该填料具有较好耐酸性,在pH降至1时依然保持高降解活性。装填BM填料的BTF可在6 d内完成挂膜;经过7 d停滞,去除率5 d可以恢复至100%;在进气乙苯浓度为800~900 mg/m3,停留时间(EBRT)为33 s时,仍可将乙苯完全去除。相较于PU填料,以BM为填料的BTF性能更优。

     

    Abstract: A kind of immobilized bio-filler (BM filler) was prepared by immobilization technology, combining polyvinyl alcohol (PVA) and sodium alginate (SA) to construct a gel skeleton, introducing activated carbon (AC), CaCO3, and composite bacterial powder, and optimizing the particle size of AC added to BM filler. The removal effect of the biological trickling filter (BTF) packed with the filler was investigated using ethylbenzene as the target pollutant. When the added AC was 100 mesh, the specific surface area of BM filler reached 57.46 m2/g with the highest mechanical strength and the best degradation effect on ethylbenzene. The results of physicochemical properties analysis showed that the filler had a dense three-dimensional internal mesh structure, with good hydrophilicity and adsorption capacity, and a large number of hydrophilic groups such as —OH and —COO on the surface, and the adsorption of ethylbenzene was 2.9 times higher than that of polyurethane sponge (PU) filler under the same conditions. Meanwhile, the filler had good acid resistance and still maintained a high degradation activity when pH dropped to 1. The BTF packed with BM filler could be started up in 6 days; after 7 days of stagnation, the removal efficiency recovered to 100% in 5 days; and ethylbenzene could still be completely removed at the inlet ethylbenzene concentration of 800-900 mg/m3 and the empty bed residence time (EBRT) of 33 s. Compared with the BTF packed with PU filler, the BTF packed with BM filler showed superior performance.

     

/

返回文章
返回