天然含铁锰矿对砷的高效去除性能与机制研究

Study on efficient arsenic removal performance and mechanism of natural ferromanganese ore

  • 摘要: 为开发高效、廉价的水体As(Ⅲ)去除材料,采用天然铁锰矿(NFM)作为吸附剂,通过动力学、热力学、等温吸附以及吸附/解吸试验评估其对As(Ⅲ)的吸附性能,结合傅里叶变换红外光谱、扫描电镜以及X射线光电子能谱(XPS)等表征手段进行机理分析,并与铁锰二元氧化物(FMO)、水钠锰矿(Bir)和针铁矿(Goe)的吸附特性进行对比。结果表明:NFM主要由锰氧化物和铁氧化物组成,铁锰摩尔比为6∶1,比表面积为280.4 m2/g,对As(Ⅲ)的饱和吸附容量为48.3 mg/g。Freundlich模型和准二级动力学模型能较好地拟合NFM的吸附过程。XPS等分析表明,NFM的吸附和氧化的协同作用是去除As(Ⅲ)的关键因素。其中,锰氧化物展示出优异的氧化As(Ⅲ)的能力,而铁氧化物具有强的吸附作用。

     

    Abstract: In order to develop an efficient and inexpensive material for As(Ⅲ) removal from water, natural ferromanganese ore (NFM) was used as adsorbent. Kinetic, thermodynamic, isothermal adsorption and adsorption/desorption experiments were conducted to evaluate the adsorption performance of As(Ⅲ). The mechanism was analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and the adsorption characteristics were compared with those of iron-manganese binary oxide (FMO), birnessite (Bir), and goethite (Goe). The results showed that NFM was mainly composed of manganese oxide and iron oxide, with a Fe-Mn molar ratio of 6∶1, the specific surface area of 280.4 m2/g, and a saturation adsorption capacity of 48.3 mg/g for As(Ⅲ). The Freundlich model and the pseudo-second order kinetic model could better fit the adsorption process of NFM. XPS and other characterization analyses indicated that the synergistic effect of adsorption and oxidation of NFM was the key factor for As(Ⅲ) removal. Among them, manganese oxides exhibited excellent oxidation of As(Ⅲ), while iron oxides had strong adsorption.

     

/

返回文章
返回