Abstract:
Phycobiliprotein has important economic value. It can be extracted and processed from algae to realize the reduction and recycling of algae sludge waste. Aiming to clarify the spatial and temporal distribution characteristics of phycobiliprotein in Dianchi Lake and its influencing factors, four samples were collected by seasons in 2022. Upon establishing the detection method of phycobiliprotein, the spatial and temporal variation characteristics of phycobiliprotein in four areas of Dianchi Lake, namely Caohai, northern Waihai, central Waihai and southern Waihai were analyzed. Based on ArcGIS, the time and spatial sequence grid data chart of phycobiliprotein concentration in Dianchi Lake was established. The results showed that the phycobiliprotein concentrations in Dianchi Lake presented the distribution characteristics of summer>autumn>spring>winter in time, the rule of northern Waihai>central Waihai>southern Waihai>Caohai in space, and the concentration of phycobiliprotein was low with phycocyanin as the main component. Through the statistical analysis of various influencing factors, it was found that there was a strong linear correlation between phycocyanin concentration and TP and BOD
5 (
P<0.01). The correlation between phycoerythrin and nutrients was low. The increase of phycobiliprotein in turn would affect pH, DO and transparency of the water body (
P<0.05). The influencing factors of phycobiliprotein were discussed in different areas, and it was concluded that nitrogen and phosphorus were the main driving factors of phycobiliprotein distribution, which might be affected by hydraulic conditions and algae population types. Although Caohai had the highest average concentration of TN and TP, its N/P value was too high, and the blue-green algae community was replaced by green algae. At the same time, its phycobiliprotein concentrationd was the lowest. While the northern Waihai had long hydraulic retention time and low N/P value, resulting in a higher proportion of blue-green algae population and the highest concentration of phycobiliprotein. N/P of Dianchi Lake water body in spring and winter was significantly higher than that in summer and autumn, which was one of the main reasons for the higher concentration of phycobiliprotein in summer and autumn.