铁基颗粒吸附剂固定床处理含砷地下水的中试研究

Pilot process of arsenic-containing groundwater purification by iron-based granular adsorbent fixed bed column

  • 摘要: 以农村地区的As污染地下水为处理对象,研发了同步去除水中As(Ⅲ)和As(Ⅴ)的铁基颗粒吸附剂(FMGA),设计并建立了以吸附固定床为核心单元的中试除As装置,对As污染地下水的处理效果进行研究。结果表明:在33 d的连续运行过程中,除As装置出水As浓度始终低于GB 5749—2022《生活饮用水卫生标准》规定限值(10 μg/L),吸附固定床首次运行的穿透时间达到786 h;使用0.2 mol/L的NaOH溶液对吸附剂进行原位再生后,吸附固定床再次运行的穿透时间仍可达到750 h,其除As性能的恢复率接近91%;除As装置的出水浊度接近于0,Fe、Mn离子浓度均低于GB 5749—2022的限值(Fe浓度为0.3 mg/L,Mn浓度为0.1 mg/L),FMGA可高效再生回用且无二次污染。吸附动力学表明,FMGA吸附As的过程符合准二级动力学模型,As通过化学吸附被去除;吸附等温线表明,FMGA对As的理论最大吸附容量为74.94 mg/g(pH为7.0)。通过表征研究可知,FMGA最大荷载为89.39 N,具有出色的机械强度。

     

    Abstract: Arsenic (As) pollution in groundwater has become an important environmental issue in China. In order to purify the arsenic-contaminated groundwater in rural areas, an iron-based granular adsorbent (FMGA) capable of synchronously removing As(Ⅲ) and As(Ⅴ) from water was developed and packed into an adsorption fixed bed. A pilot-scale water treatment system was designed and established with a fixed bed as the core unit, which had a good capability for the treatment of As-contaminated groundwater. The results showed that during the continuous operation of 33 days, the residual As concentration in the effluent of the pilot-scale system was continuously below the limit of Standards for Drinking Water Quality (GB 5749-2022 ) (10 μg/L). The breakthrough time of the fixed bed reached 786 h in the first cycle. After the in-situ regeneration using 0.2 mol/L NaOH solution, the breakthrough time of the fixed bed for reuse could still reach 750 h, and the recovery rate of its arsenic adsorption capacity was close to 91%. The turbidity of the effluent for the pilot-scale system was close to zero, and the concentrations of iron and manganese ions were both lower than the limits of the sanitary standard (Fe<0.3 mg/L, Mn<0.1 mg/L). FMGA could be efficiently regenerated and reused without secondary pollution. The adsorption kinetics indicated that the adsorption process of As by FMGA was consistent with the quasi-second-order kinetic model, and As could be removed by chemisorption. The adsorption isotherm showed that the theoretical maximum adsorption capacity of FMGA for As was 74.94 mg/g (pH=7.0). According to the surface characterization results, the maximum load of FMGA was 89.39 N, indicating an excellent mechanical strength.

     

/

返回文章
返回