冶炼厂周边农用地土壤重金属非致癌健康风险评估及修正

吴健芳, 王红梅

吴健芳,王红梅.冶炼厂周边农用地土壤重金属非致癌健康风险评估及修正[J].环境工程技术学报,2024,14(1):112-120. DOI: 10.12153/j.issn.1674-991X.20230517
引用本文: 吴健芳,王红梅.冶炼厂周边农用地土壤重金属非致癌健康风险评估及修正[J].环境工程技术学报,2024,14(1):112-120. DOI: 10.12153/j.issn.1674-991X.20230517
WU J F,WANG H M.Assessment and amendment methods of heavy metal non-carcinogenic health risks in agricultural land around smelters[J].Journal of Environmental Engineering Technology,2024,14(1):112-120. DOI: 10.12153/j.issn.1674-991X.20230517
Citation: WU J F,WANG H M.Assessment and amendment methods of heavy metal non-carcinogenic health risks in agricultural land around smelters[J].Journal of Environmental Engineering Technology,2024,14(1):112-120. DOI: 10.12153/j.issn.1674-991X.20230517

冶炼厂周边农用地土壤重金属非致癌健康风险评估及修正

基金项目: 国家重点研发计划项目(2021YFC1809104)
详细信息
    作者简介:

    吴健芳(1994—),女,硕士研究生,主要从事土壤风险评价及管理研究,wjianfang2022@163.com

    通讯作者:

    王红梅(1971—),女,研究员,博士,主要从事环境污染与风险控制研究,wanghmxj@163.com

  • 中图分类号: X171

Assessment and amendment methods of heavy metal non-carcinogenic health risks in agricultural land around smelters

  • 摘要:

    为科学量化重金属复合暴露产生的非致癌健康风险,引入靶器官毒性剂量(TTD)模型和证据权重分析模型(WOE)对传统评估模型(HRA)的非致癌健康风险进行修正,并以华中某冶炼厂周边农用地土壤重金属为例,探究3种模型对非致癌健康风险评估结果的影响。结果表明:土壤重金属镉(Cd)、铅(Pb)、铬(Cr)和砷(As)的浓度均值分别为0.37、36.65、69.06和7.66 mg/kg,其中Cd、Pb和Cr不同程度超出研究区土壤背景值,4种重金属传统非致癌健康风险值(HIHRA)为2.27×10−3~3.35×10−1。经TTD模型和WOE模型修正后4种重金属HITTD和HIWOE分别为1.64×10−2~5.50×10−1和1.08×10−2~6.09×10−1,其中HITTD、HIWOE均值分别为HIHRA均值的1.88倍和1.17倍。研究显示,对多种重金属复合污染的农用地开展人体非致癌健康风险评估时,需考虑多靶器官效应及重金属间的交互作用,避免传统风险评估方法低估或高估土壤污染对暴露人群产生的实际健康损害。

    Abstract:

    To scientifically quantify the non-carcinogenic health risks of soil combined polluted by heavy metals, the Target Organ Toxicity Dose (TTD) model and Weight of Evidence (WOE) analysis model were introduced to modify the non-carcinogenic health risks assessed by traditional human risk assessment (HRA) model. Adults health risks of heavy metals in agricultural soils surrounding a smelting plant in Central China by using the three methods were compared as a field case. The results showed that the average concentrations of heavy metals cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As) in the soil were 0.37, 36.65, 69.06, and 7.66 mg/kg, respectively. Among them, Cd, Pb, and Cr exceeded the soil background values to varying degrees. Non-carcinogenic health risk values assessed by HRA (HIHRA) for these four heavy metals ranged from 2.27×10−3 to 3.35×10−1. Amended by TTD and WOE model, HITTD and HIWOE values for the four heavy metals ranged from 1.64×10−2 to 5.50×10−1 and from 1.08×10−2 to 6.09×10−1, respectively. The average values of HITTD and HIWOE were 1.88 and 1.17 times higher than that of HIHRA, respectively. The study emphasized the importance to consider the multi-target organs effect of a specific heavy metals and the interactions among the heavy metals for assessing the non-carcinogenic health risks on agricultural land contaminated with multiple heavy metals. This approach helps to prevent the limitations of traditional risk assessment methods, which may not accurately reflect the real health hazards posed by polluted soil to the population exposed to it.

  • 随着城镇化和工业化进程的持续推进,环境中的重金属丰度受采矿、工业活动、废水灌溉、农药和化肥施用、固体废物处理和车辆尾气等高强度人类活动影响而持续升高,造成的土壤重金属污染已成为全球性环境问题[1-4]。其中,我国矿区周边农用地土壤重金属污染问题尤为突出,大量研究已经证明农用地土壤重金属污染的人体健康危害,如引起人体肾脏、肝脏、神经及生殖系统等器官不同程度的损害[5-8]。研究发现经口摄入是土壤重金属进入人体并富集的主要暴露途径[9-11]。因此,准确评估经口摄入土壤重金属产生的毒性效应,对人体的健康风险评估至关重要。

    人体健康风险评估(human risk assessment, HRA)模型是土壤重金属风险评估及预测的传统评估方法[12-14],然而,HRA模型仅考虑单因子重金属作用于最为敏感的靶器官,忽视了对其他靶器官的毒性效应,这可能导致土壤重金属污染的人体非致癌健康风险被低估[15-17]。基于此,美国毒物与疾病登记署(Agency for Toxic Substances and Disease Registry, ATSDR)提出靶器官毒性剂量(target organ toxicity dose,TTD)模型,该模型将重金属可能作用的靶器官均考虑在内,修正了重金属对人体产生的非致癌健康风险 [18-19]。考虑到实际情况下,不同类型重金属在环境中的共存现象及其协同毒性并非简单的剂量线性累加,证据权重(weight of evidence,WOE)模型进一步被提出以修正复合污染下重金属对人体产生的非致癌健康风险[20-23]。前人针对室内灰尘及垃圾拆解区PM10中重金属进行的非致癌健康风险研究,发现基于TTD和WOE模型评估的非致癌健康风险值均大于HRA的评估值[16, 24-26]。然而,目前我国应用TTD和WOE模型评估土壤中重金属非致癌健康风险的研究报道较为有限,这可能导致风险误判并诱导潜在的长期健康风险。因此,有必要采用TTD和WOE模型探究土壤复合污染中多种重金属联合暴露的非致癌健康风险,拓展其在土壤重金属风险管控的适用性。

    笔者基于对单一金属的多靶器官效应和重金属两两间交互作用下的多靶器官毒性效应的考虑,利用TTD和WOE模型对冶炼厂周边农用地4种土壤重金属(Pb、Cr、Cd和As)HRA模型评估的非致癌健康风险进行修正,对比3种模型对评估结果的影响,以期更精准地反映实际暴露产生的风险,为土壤重金属风险评估提供新思路,为土壤风险管理提供有效的技术支撑。

    研究区为我国华中某冶炼厂周边农用地。在研究区域内,基于遥感影像和土地利用图,按1 km×1 km网格法对农用地布点。实地调查采样时,根据耕作历史等实际情况优化点位位置,共采集土壤样品117个,采样点分布如图1所示。

    图  1  研究区采样点分布
    Figure  1.  Distribution of sampling points in the study area

    参考HJ 803—2016《土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法》测定重金属As、Cd、Pb和Cr浓度[27]。称取经风干粉碎研磨后过100目筛的土壤样品0.10 g于50 mL锥形瓶中,加入5 mL王水。将表面皿半盖在锥形瓶上,置于电热板上加热,温度设置在180~200 ℃,保持王水微沸状态约2 h。消解至王水黏稠约剩1 mL时取下冷却至室温,用少量超纯水清洗表面皿、锥形瓶内壁和残渣,经滤纸过滤到50 mL比色管中。重复上述清洗至少3次,洗液并入,最后冲洗滤纸,定容。采用电位差测量法测定土壤pH[28],采用GBW07405土壤国家标准参比物质和平行空白样进行质控。

    根据研究区土壤农业耕种的利用功能特性判断,该区域暴露人群主要为成人,参考HJ 25.3—2019《建设用地土壤污染风险评估技术导则》利用HRA模型评估4种重金属对成人产生的非致癌健康风险,在此基础上,分别引入TTD和WOE模型进一步对非致癌健康风险进行修正。

    经口摄入是土壤重金属进入人体的主要暴露途径[12-14],因此,本研究仅考虑经口摄入土壤重金属对成人产生的非致癌健康风险。土壤重金属As、Cd、Pb和Cr的日均暴露量、非致癌健康风险的计算公式如下[29-30]

    $$ \text{OISE}\text{R}{_{{i}}}=\frac{C_i\times\text{OSIR}\times\text{ED}\times\text{EF}\times\text{AB}\text{S}_{\mathrm{o}}}{\text{BW}\times\text{AT}}\times10^{-6} $$ (1)
    $$ {\text{HI}} = \sum\limits_{i = 1}^n {{\text{H}}{{\text{Q}}_{i}} = \frac{{{\text{OISE}}{{\text{R}}_i}}}{{{\text{Rf}}{{\text{D}}_i}}}} $$ (2)

    式中:OISERi为重金属i的日均暴露剂量,mg/(kg·d);RfD为重金属经口摄入暴露途径的参考浓度,mg/(kg·d);n为重金属种类数;HQi为重金属i的危害商值,用来指示非致癌健康风险;HI为多种重金属的危害指数值,表示累积总非致癌健康风险。一般认为HQi或HI小于1.0时,非致癌健康风险较低,可忽略,而HQi或HI大于1.0时,存在明显的非致癌健康风险。其他相关参数解释、单位、取值及数据来源见表1

    表  1  人群(成人)暴露评估及重金属毒性参数
    Table  1.  Population (adult) exposure assessment and heavy metal toxicity parameters
    参数 含义 数值 数据来源
    Ci 土壤中污染物的浓度/(mg/kg) 监测值 本研究
    OSIR 日均摄入率/(mg/d) 100 文献[31-32]
    EF 暴露频次/(d/a) 350 文献[31-32]
    ED 暴露时间/a 24 文献[31-32]
    BW 平均体重/kg 61.8 文献[31-32]
    AT 平均暴露时间/d 9 125 文献[31-32]
    ABSo 经口摄入吸收效率因子,无量纲 1 文献[31-32]
    RfDAs 经口摄入As参考剂量/〔mg/(kg·d)〕 3×10−4 文献[31-34]
    RfDCd 经口摄入Cd参考剂量/〔mg/(kg·d)〕 1×10−3 文献[31-34]
    RfDCr 经口摄入Cr参考剂量/〔mg/(kg·d)〕 3×10−3 文献[31-34]
    RfDPb 经口摄入Pb参考剂量/〔mg/(kg·d)〕 3.5×10−3 文献[31-34]
    下载: 导出CSV 
    | 显示表格

    TTD模型是在HRA的基础上,将4种重金属相应的靶器官考虑在内,对非致癌健康风险进行修正。4种重金属相应靶器官的HQ和HI计算公式 [18]如下:

    $$ \text{HQ}_{\text{endpoint}}^{\mathit{i}}=\text{OISE}\text{R}\mathit{_{^i}}/\text{TDD}_{\text{endpoint}}^{\mathit{i}} $$ (3)
    $$ \text{H}\text{I}_{\text{endpoint}}=\sum\limits_{i=1}^n\text{HQ}_{\text{endpoint}}^{\mathit{i}} $$ (4)

    式中TTDiendpoint为重金属i相应的靶器官毒性剂量,mg/kg;HQiendpoint为重金属i的靶器官的危害商,无量纲;HIendpoint为重金属各靶器官的危害指数,无量纲。

    ATSDR颁布关于《化学混合物联合毒性作用评估指导手册》[18]中指出Cd和Pb的靶器官为神经、肾脏、血液和睾丸;Cr的靶器官为神经、肾脏、血液和睾丸;As的靶器官为神经、肾脏和血液。4种重金属在相应靶器官中的TTD [18,35-36]表2。其中,Pb的TTD以血铅值(PbBs)为单位,因此在对非致癌健康风险评估前,利用ALM(adult lead model)模型〔式(5)~(7)〕,将Pb的日均暴露(OISERnc)转化为以PbBs的OISERnc[17,26]

    表  2  重金属经口暴露靶器官毒性剂量
    Table  2.  TTD value in target organs for oral exposure to heavy metals
    靶器官As/(mg/kg)Cr/(mg/kg)Pb/(μg/dL)Cd/(mg/kg)
    神经0.00030.01001000.0002
    肾脏0.09000.01003400.0050
    血液0.00060.0031000.0008
    睾丸0.0054000.0003
    下载: 导出CSV 
    | 显示表格
    $$ \text{INTAK}=C\mathrm{_{Pb}}\times\text{I}\text{R}_{\text{s}}\times\text{E}\text{F}_{\text{s}}/\text{AT}\mathrm{_y} $$ (5)
    $$ {\text{UPTAKE}} = {\text{A}}{{\text{F}}_{\text{s}}} \times {\text{INTAKE}} $$ (6)
    $$ {\text{Pb}}{{\text{B}}_{{\text{adult-central}}}}{\text{ = Pb}}{{\text{B}}_{{\text{adult-0}}}}{\text{ + BKSF}} \times {\text{UPTAKE}} $$ (7)

    式中:INTAK为平均每日摄取Pb的量,μg/d;CPb为土壤中铅的浓度(监测值),μg/g;IRs为每日摄入土壤的量,取0.05 g/d;EFs为平均每年摄入土壤的时间,取220 d;ATy为年均暴露时间,取365 d;UPTAKE为平均每日吸收Pb的量,μg/d;AFs为吸收率,取0.12;PbBadult-0为不受场地污染暴露情况下,成人血铅浓度的背景值,取4.79 μg/dL;BKSF为血铅和摄入体内铅含量的斜率系数,取0.4 d/dL。相关参数参考前人研究结果[24-25,33]

    WOE模型是基于药代动力学、代谢研究和活性结构关系,考虑了暴露途径的相关性、持续时间等因素,在TTD基础上引入重金属两两间交互作用来修正非致癌健康风险。经WOE修正后HI的计算公式[35,37]如下:

    $$ F_{i,j}=\frac{\text{H}\text{Q}{_{{j}}}}{\text{H}\text{I}_{\text{add}}-\mathrm{H}\text{Q}\mathit{_{{i}}}} $$ (8)
    $$ G_{i,j}=\frac{(\mathrm{HQ}_i\times\mathrm{HQ}_j)^{0.5}}{(\mathrm{HQ}_i+\mathrm{HQ}_j)\times0.5} $$ (9)
    $$ \text{HI}=\sum\limits_{i=1}^n\left(\mathrm{HQ}_i\times\sum_{ }^{ }F_{i,j}M_{i,j}^{B_{i,j}G_{i,j}}\right) $$ (10)

    式中:Fi,j为重金属 j 作用于重金属 i 的暴露因子,无量纲;HQj为重金属j的危害商,无量纲;HIadd为重金属基于剂量相加的危害指数,无量纲;B 为重金属 j 作用于重金属 i 的证据权重因子赋值,无量纲;G为相对权重因子;M为交互作用等级,美国国家环境保护局(US EPA)推荐默认值为5[38];HI为重金属基于交互作用的危害指数,无量纲。

    根据ATSDR颁布的《砷、镉、铬、铅的交互作用》[36,38],以神经、肾脏、血液和睾丸为As、Cd、Cr和Pb共同作用的靶器官,采用二元权重得分(B)来指示重金属间的交互作用特征及大小,每对污染物间可能存在2个B,研究区域各种金属对成人相应靶器官的B,结果见表3

    表  3  重金属As、Cd、Cr和Pb神经、肾脏、血液和睾丸证据二元权重得分(B)
    Table  3.  Value of WOE for neurological, renal, hematological, and testicular toxicity exposure to Cd, As, Cr, and Pb
    神经 肾脏 血液 睾丸
    协同作用 Pb+As(0.50) Cr+As(0.75) Pb+Cd(0.71)
    As+Pb(0.50) Cd+Pb(0.71)
    Cd+Pb(0.10)
    Cr+As(0.75)
    拮抗作用 As+Cr(−0.5) Pb+As(0.50) Pb+As(−0.5) As+Cd(−0.14)
    As+Pb(−0.50) As+Pb(−0.50) As+Cr(0.06)
    As+Cr(−0.50) As+Cd(0.23)
    Cd+Pb(−0.75) As+Cr(0.06)
    Cr+As(−0.50) Cd+Pb(0.23)
    Cd+As(0.23)
    下载: 导出CSV 
    | 显示表格

    表4所示,土壤重金属中Cd、Pb、Cr和As浓度的平均值分别为0.37、36.65、69.06和7.66 mg/kg,其中Cd、Pb和Cr的浓度均值分别为研究区域土壤背景值的3.4、1.2和1.5倍,且55%以上的样品中这3种重金属浓度均超出区域土壤背景值。与九江、抚州、上饶和景德镇等周边市区农用地相比,研究区Cd浓度较高,这可能与金属冶炼相关[39-40]。对比GB 15618—2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》的风险筛选值,Cd、Pb、As和Cr的最高浓度分别为筛选值的27.6、1.6、1.5和1.0倍,说明这4种重金属对研究区部分点位的农产品质量安全、农作物生长和土壤生态环境构成潜在威胁。

    表  4  研究区土壤pH、重金属浓度特征
    Table  4.  Characteristics of pH and heavy metal contents of soil in the study area
    指标 平均值/
    (mg/kg)
    最大值/
    (mg/kg)
    最小值/
    (mg/kg)
    背景值/
    (mg/kg)
    变异系
    数/%
    Cd 0.37 8.28 0.01 0.11 214
    Pb 36.65 109.50 4.80 32.10 52
    Cr 69.06 223.75 4.00 48.00 59
    As 7.66 41.40 0.15 14.90 89
    pH1) 5.10 7.84 4.24 20
      1)无量纲。
    下载: 导出CSV 
    | 显示表格

    研究区土壤pH为4.2~7.8,平均值为5.1,低于我国农用地土壤pH均值(5.5),其中,85%以上的土壤样品pH小于5.5,仅15%的土壤样品pH在5.5~7.8,该结果与前人研究结果基本一致[41],这可能与金属冶炼过程中酸性气体排放沉降相关[42]。研究发现,pH降低会增强土壤重金属活性及其迁移能力,加速重金属在不同环境介质的迁移转化,使其暴露途径更复杂、更隐蔽,为开展精准风险管控带来挑战 [43-44]

    4种重金属变异系数依次为Cd>As>Cr>Pb,其中,Cd变异系数高达214%,空间分布具有强变异性。这与我国农用地土壤Cd的变化及分布规律类似,可能与研究区域农业集约化相关,研究表明农作物种植过程中农药、化肥的不合理使用会加剧土壤Cd的累积[45-46]。本研究中95%的置信区间内,土壤重金属As和Cd、Pb、Cr浓度之间分别呈正相关(图2),表明As和Cd、Pb、Cr可能来源于同污染源,而Pb与Cr浓度呈负相关,说明这2种重金属来源可能不同[47]

    图  2  土壤重金属间相关性分析
    注:*、**分别表示在95%和99%置信区间内统计结果显著。
    Figure  2.  Correlation analysis between heavy metals in soil

    经HRA模型评估成人经口摄入土壤重金属日均暴露量(OISER)和非致癌健康风险HQ和累积非致癌健康风险HI,结果如图3所示。4种重金属的OISER依次为Cr〔3.33×10−4 mg/(kg·d)〕>Pb〔4.17×10−5 mg/(kg·d)〕> As〔6.32×10−6 mg/(kg·d)〕> Cd〔7.11×10−7 mg/(kg·d)〕。进一步评估4种重金属非致癌健康风险,发现元素Cr、As、Pb、Cd的HQ均值分别为0.034、0.021、0.012、0.001,与张施阳等[48]研究相比,研究区Cr土壤背景值较高,导致农用地HQCr相对较大,但仍在安全阈值范围内。整体而言,研究区4种重金属对成人产生的HIHRA为0.003~0.335,均值为0.068,低于安全阈值(HI=1),经HRA模型评估发现4种重金属对成人不存在显著的非致癌健康风险。这一结果与Chen等[49-50]的研究一致,然而与无明显点源污染农用地相比,研究区HQCd和HQAs偏大,这可能与冶炼厂生产过程中重金属废水、废气不合理的排放有关[51-52]

    图  3  研究区土壤重金属日均暴露量和非致癌健康风险
    Figure  3.  Soil daily exposure to heavy metals and non-carcinogenic health risks in the study area

    TTD模型将As、Pb、Cd和Cr相应的靶器官考虑在内,根据式(3)~(4)计算经口摄入4种土壤重金属As、Pb、Cd和Cr相应的靶器官的HQ及HI(图4)。HQ血液+神经+睾丸+肾脏依次为Cr(0.076)>As(0.032)>Pb(0.012)>Cd(0.008),其中,Cr的HQ血液+神经+睾丸+肾脏远高于其他3种重金属,这与HRA模型评估结果一致,主要归因于研究区Cr的较高土壤背景值[53-54]。就单一靶器官而言,血液、神经、睾丸和肾脏上4种重金属共同作用的HI均值依次为5.06×10−2、3.98×10−2、2.20×10−2和1.54×10−2,表明农用地土壤中重金属对成人血液和神经系统造成的损害较大,但仍在土壤风险安全阈值范围内。相比于传统HRA模型风险评估结果,经TTD模型修正的HITTD是HIHRA的1.64~5.93倍,这主要是由于神经、肾脏、血液和睾丸4种靶器官均为2种及以上重金属共同作用[55]。然而HRA模型仅考虑单一靶器官的毒性效应,未考虑其他靶器官产生的毒性效应。已有研究发现,各重金属在人体内存在多个靶器官毒性效应剂量,特定暴露剂量的重金属可能同时诱发多个靶器官毒性效应 [56-57]。因此,在评估人体健康非致癌健康风险时,须将污染物对人体健康产生的损害表征到具体的靶器官(如血液、神经系统、肾脏和睾丸),而TTD模型刻画了污染物作用于相应靶器官的非致癌健康风险,弥补了HRA模型无法综合评估多靶器官风险的不足 [58]

    图  4  经TTD模型修正的非致癌健康风险
    Figure  4.  Results of non-carcinogenic health risk amended by TTD

    HRA和TTD模型以简单线性加和形式计算重金属的HI,未考虑同一靶器官上多种重金属间协同或拮抗作用对毒性效应的影响。因此,本研究采用WOE模型进一步探究重金属Cd、As、Cr和Pb两两间交互作用对神经、肾脏、血液和睾丸靶器官毒性效应的影响,结果如图5所示。

    图  5  经WOE模型修正的非致癌健康风险
    Figure  5.  Results of non-carcinogenic health risk amended by WOE analysis model

    就单一靶器官而言,考虑了Cd、As、Cr和Pb两两间交互作用,神经、血液、睾丸和肾脏的HI依次为1.60×10−3~2.16×10−1、4.01×10−5~7.25×10−3、1.94×10−3~3.85×10−1和5.70×10−7~8.32×10−4。整体而言,经WOE修正后研究区土壤重金属的HIWOE为3.58×10−3~6.09×10−1,均值为0.080,低于土壤风险安全阈值。对比3模型评估的非致癌健康风险,发现HITTD(0.128)>HIWOE(0.080)>HIHRA(0.068),TTD模型评估结果可能由于线性累加多种重金属的多靶器官效应而高估实际风险,而WOE在考虑多靶器官的基础上,进一步考虑重金属间的交互作用,潜在的拮抗作用导致风险评估值下降[4]。就评估的4种重金属而言,目前已知的重金属两两间交互作用以拮抗作用为主,而协同作用较少(表3),这是基于WOE模型评估的重金属健康风险下降的重要原因。研究表明,重金属间两两交互作用在靶器官具有协同或拮抗效应,Pb和Cd的单一暴露均会损伤人体的学习记忆功能,而在Pb和Cd的混合暴露中,Pb削弱了Cd对神经系统的抑制活性(拮抗),Cd增强了Pb对神经系统的抑制活性(协同)[59-60]。此外,2种重金属元素间的交互作用在不同组织器官中表现出差异性毒性效应。在睾丸中同时给予Cd和Pb的混合物,Cd增强了Pb对靶器官睾丸的毒性作用[61],而在血液和肾脏中,Cd极大地降低了组织中Pb的浓度,减小Pb对相关组织器官的损害作用[62-63]

    综上表明,研究区土壤重金属污染对人体健康不存在显著的非致癌健康风险,但基于TTD和WOE模型修正的非致癌健康风险要高于传统HRA评估值。这是由于实际环境中重金属以混合物的形式存在,多种重金属共存的靶器官毒性具有多种联合作用(加和、拮抗、协同)形式,单一重金属的健康评估方法可能会低估金属复合共存产生影响的潜力[64-65]。因此,着眼于我国重金属污染场地数量多、类型杂、治理难、隐患大的现状,有必要充分考虑复合污染物可能作用所有的靶器官及污染物间交互作用对靶器官上毒性效应的影响,借助更加精细化的健康风险评估模型,以更加科学的风险评估手段来指导土壤风险管控和安全利用。

    (1)研究区土壤Cd、Pb、Cr和As中,除As外,Cd、Pb和Cr元素浓度均值超出研究区土壤背景值,其中Cd样品超标率高达85%,且样品中浓度最高值达到农用地土壤风险筛选值的27.6倍。

    (2)研究发现传统HRA模型、TTD模型和WOE模型非致癌健康风险分别为3.0×10−3~3.35×10−1、1.64×10−2~5.50×10−1和3.58×10−3~6.09×10−1,均小于安全阈值(HI=1),但HITTD>HIWOE>HIHRA,传统非致癌健康风险评估模型低估了复合重金属污染场地的实际风险。因此,考虑重金属多靶器官毒性效应和在同一靶器官上重金属两两间的交互作用,可更客观、精准地评估土壤重金属复合污染产生的人体健康风险。

    (3)由于实际土壤污染类型的复杂性,亟须探究复合重金属多靶器官毒性效应及污染物间交互作用机制,完善多靶器官和交互作用的毒性基础数据系统,针对复合污染场地,构建系统的、精细化的健康风险评估方法。

  • 图  1   研究区采样点分布

    Figure  1.   Distribution of sampling points in the study area

    图  2   土壤重金属间相关性分析

    注:*、**分别表示在95%和99%置信区间内统计结果显著。

    Figure  2.   Correlation analysis between heavy metals in soil

    图  3   研究区土壤重金属日均暴露量和非致癌健康风险

    Figure  3.   Soil daily exposure to heavy metals and non-carcinogenic health risks in the study area

    图  4   经TTD模型修正的非致癌健康风险

    Figure  4.   Results of non-carcinogenic health risk amended by TTD

    图  5   经WOE模型修正的非致癌健康风险

    Figure  5.   Results of non-carcinogenic health risk amended by WOE analysis model

    表  1   人群(成人)暴露评估及重金属毒性参数

    Table  1   Population (adult) exposure assessment and heavy metal toxicity parameters

    参数 含义 数值 数据来源
    Ci 土壤中污染物的浓度/(mg/kg) 监测值 本研究
    OSIR 日均摄入率/(mg/d) 100 文献[31-32]
    EF 暴露频次/(d/a) 350 文献[31-32]
    ED 暴露时间/a 24 文献[31-32]
    BW 平均体重/kg 61.8 文献[31-32]
    AT 平均暴露时间/d 9 125 文献[31-32]
    ABSo 经口摄入吸收效率因子,无量纲 1 文献[31-32]
    RfDAs 经口摄入As参考剂量/〔mg/(kg·d)〕 3×10−4 文献[31-34]
    RfDCd 经口摄入Cd参考剂量/〔mg/(kg·d)〕 1×10−3 文献[31-34]
    RfDCr 经口摄入Cr参考剂量/〔mg/(kg·d)〕 3×10−3 文献[31-34]
    RfDPb 经口摄入Pb参考剂量/〔mg/(kg·d)〕 3.5×10−3 文献[31-34]
    下载: 导出CSV

    表  2   重金属经口暴露靶器官毒性剂量

    Table  2   TTD value in target organs for oral exposure to heavy metals

    靶器官As/(mg/kg)Cr/(mg/kg)Pb/(μg/dL)Cd/(mg/kg)
    神经0.00030.01001000.0002
    肾脏0.09000.01003400.0050
    血液0.00060.0031000.0008
    睾丸0.0054000.0003
    下载: 导出CSV

    表  3   重金属As、Cd、Cr和Pb神经、肾脏、血液和睾丸证据二元权重得分(B)

    Table  3   Value of WOE for neurological, renal, hematological, and testicular toxicity exposure to Cd, As, Cr, and Pb

    神经 肾脏 血液 睾丸
    协同作用 Pb+As(0.50) Cr+As(0.75) Pb+Cd(0.71)
    As+Pb(0.50) Cd+Pb(0.71)
    Cd+Pb(0.10)
    Cr+As(0.75)
    拮抗作用 As+Cr(−0.5) Pb+As(0.50) Pb+As(−0.5) As+Cd(−0.14)
    As+Pb(−0.50) As+Pb(−0.50) As+Cr(0.06)
    As+Cr(−0.50) As+Cd(0.23)
    Cd+Pb(−0.75) As+Cr(0.06)
    Cr+As(−0.50) Cd+Pb(0.23)
    Cd+As(0.23)
    下载: 导出CSV

    表  4   研究区土壤pH、重金属浓度特征

    Table  4   Characteristics of pH and heavy metal contents of soil in the study area

    指标 平均值/
    (mg/kg)
    最大值/
    (mg/kg)
    最小值/
    (mg/kg)
    背景值/
    (mg/kg)
    变异系
    数/%
    Cd 0.37 8.28 0.01 0.11 214
    Pb 36.65 109.50 4.80 32.10 52
    Cr 69.06 223.75 4.00 48.00 59
    As 7.66 41.40 0.15 14.90 89
    pH1) 5.10 7.84 4.24 20
      1)无量纲。
    下载: 导出CSV
  • [1]

    ROSS P S. Marine mammals as sentinels in ecological risk assessment[J]. Human and Ecological Risk Assessment:an International Journal,2000,6(1):29-46. DOI: 10.1080/10807030091124437

    [2]

    WU J, LU J, LI L M, et al. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau[J]. Chemosphere,2018,201(6):234-242.

    [3] 吕玉娟,王秋月,孙雪梅,等. 浙江省某尾矿库周边农田土壤重金属污染特征及来源解析[J]. 环境工程技术学报,2023,13(4):1464-1475. DOI: 10.12153/j.issn.1674-991X.20221193

    LÜ Y J,WANG Q Y,SUN X M,et al. Pollution characteristics and source identification of heavy metals in farmland soils around a tailing pond in Zhejiang Province[J]. Journal of Environmental Engineering Technology,2023,13(4):1464-1475. DOI: 10.12153/j.issn.1674-991X.20221193

    [4] 耿治鹏,宋颉,王春林,等. 污染场地土壤重金属污染空间特征分析:以某搬迁电镀厂为例[J]. 环境工程技术学报,2023,13(1):295-302. DOI: 10.12153/j.issn.1674-991X.20210617

    GENG Z P,SONG J,WANG C L,et al. Spatial characteristics of soil heavy metal pollution in polluted sites: taking a relocated electroplating factory as an example[J]. Journal of Environmental Engineering Technology,2023,13(1):295-302. DOI: 10.12153/j.issn.1674-991X.20210617

    [5]

    SHI J D, ZHAO D, REN F T, et al. Spatiotemporal variation of soil heavy metals in China: the pollution status and risk assessment[J]. Science of the Total Environment,2023,871:161768. DOI: 10.1016/j.scitotenv.2023.161768

    [6]

    LIANG Q, TIAN K, LI L, et al. Ecological and human health risk assessment of heavy metals based on their source apportionment in cropland soils around an e-waste dismantling site, Southeast China[J]. Ecotoxicology and Environmental Safety,2022,242:113929. DOI: 10.1016/j.ecoenv.2022.113929

    [7]

    GU Y G, GAO Y P, LIN Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China's largest city, Guangzhou[J]. Applied Geochemistry,2016,67:52-58. DOI: 10.1016/j.apgeochem.2016.02.004

    [8]

    LI Y, ZHOU S L, JIA Z Y, et al. Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China[J]. Environmental Pollution,2021,284(1):117465.

    [9]

    JIANG Y X, CHAO S H, LIU J W, et al. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China[J]. Chemosphere,2017,168:1658-1668. DOI: 10.1016/j.chemosphere.2016.11.088

    [10] 张浩, 王洋, 王辉, 等. 某废铅蓄电池炼铅遗留场地土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2023,13(2):769-777. DOI: 10.12153/j.issn.1674-991X.20220313

    ZHANG H, WANG Y, WANG H, et al. Heavy metal pollution characteristics and health risk assessment of soil from an abandoned site for lead smelting of waste lead batteries[J]. Journal of Environmental Engineering Technology,2023,13(2):769-777. DOI: 10.12153/j.issn.1674-991X.20220313

    [11] 程睿. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报,2020,10(2):280-287. DOI: 10.12153/j.issn.1674-991X.20190095

    CHEN R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology,2020,10(2):280-287. DOI: 10.12153/j.issn.1674-991X.20190095

    [12]

    FILIMON M N, CARABA I V, POPESCU R, et al. Potential ecological and human health risks of heavy metals in soils in selected copper mining areas: a case study: the Bor Area[J]. International Journal of Environmental Research and Public Health,2021,18(4):1516. DOI: 10.3390/ijerph18041516

    [13]

    COVRE W P, RAMOS S J, Da SILVEIRA PEREIRA W V, et al. Impact of copper mining wastes in the Amazon: properties and risks to environment and human health[J]. Journal of Hazardous Materials,2022,421(1):126688.

    [14]

    YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. Science of the Total Environment,2018,642(11):690-700.

    [15]

    GU Y G, LIN Q, GAO Y P. Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China's largest city, Guangzhou[J]. Journal of Cleaner Production,2016,115:122-129. DOI: 10.1016/j.jclepro.2015.12.031

    [16] 段宁, 方丽婷, 张湘泰. 基于靶器官的土壤重金属非致癌健康风险评估[J]. 安全与环境工程,2021,28(4):207-212. DOI: 10.13578/j.cnki.issn.1671-1556.20200985

    DUAN N, FANG L T, ZHANG X T. Non-carcinogenic health risk assessment of soil heavy metals based on target organs[J]. Safety and Environmental Engineering,2021,28(4):207-212. DOI: 10.13578/j.cnki.issn.1671-1556.20200985

    [17] 刘丽君, 韩静磊, 钱益斌, 等. 利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险[J]. 环境化学,2019,38(5):1014-1020.

    LIU L J, HAN J L, QIAN Y B, et al. Assessment of heavy metal non-carcinogenic health risk in solidified fly ash using TTD and WOE methods[J]. Environmental Chemistry,2019,38(5):1014-1020.

    [18]

    ATSDR. Guidance manual for the assessment of joint toxic action of chemical mixtures[EB/OL]. (2018-10-12) [2023-08-10]. http://www.atsdr.cdc.gov/interactionprofiles/ipga.html.

    [19]

    US EPA. Risk assessment guidance for superfund (RAGS) part A [EB/OL]. (2018-10-12)[2023-08-10]. https://www.epa.gov/sites/production/files/2015-09/ documents/rags_a.pdf.

    [20] 王美娥, 霍彦慧, 丁寿康, 等. 场地土壤重金属镉和铅复合污染毒性阈值的推导及其应用[J]. 生态毒理学报,2021,16(5):259-270. DOI: 10.7524/AJE.1673-5897.20210510002

    WANG M E, HUO Y H, DING K S, et al. Derivation of toxicity threshold for combined pollution of cadmium and lead in site soil and its application[J]. Asian Journal of Ecotoxicology,2021,16(5):259-270. DOI: 10.7524/AJE.1673-5897.20210510002

    [21] 马喆, 王美娥, 姜瑢, 等. 场地实际重金属复合污染土壤生态毒性效应定量评价[J]. 生态毒理学报,2022,17(4):367-377. DOI: 10.7524/AJE.1673-5897.20211101001

    MA Z, WANG M E, JIANG R, et al. Quantitative evaluation of ecological toxicity effect of real heavy metal combined pollution in site soil[J]. Asian Journal of Ecotoxicology,2022,17(4):367-377. DOI: 10.7524/AJE.1673-5897.20211101001

    [22]

    WILBUR S B, HANSEN H, POHL H, et al. Using the ATSDR guidance manual for the assessment of joint toxic action of chemical mixtures[J]. Environmental Toxicology and Pharmacology,2004,18(3):223-230. DOI: 10.1016/j.etap.2003.03.001

    [23] 任超, 肖建辉, 李竞天, 等. 不同玉米品种Cd、Pb、Zn和As积累与转运特性[J]. 环境科学,2022,43(8):4232-4252. DOI: 10.13227/j.hjkx.202107117

    REN C, XIAO J H, LI J T, et al. Accumulation and transport characteristics of Cd, Pb, Zn and As in different maize varieties[J]. Environmental Science,2022,43(8):4232-4252. DOI: 10.13227/j.hjkx.202107117

    [24] 罗巍巍, 冯涛, 屠德刚, 等. 基于靶器官和证据权重模型评估土壤重金属健康风险[J]. 四川环境,2022,41(5):275-280. DOI: 10.14034/j.cnki.schj.2022.05.041

    LUO W W, FENG T, TU D G, et al. Health risk assessment of soil heavy metals based on target organs and weight of evidence model[J]. Sichuan Environment,2022,41(5):275-280. DOI: 10.14034/j.cnki.schj.2022.05.041

    [25] 陈希超, 朱晓辉, 林必桂, 等. 华南某电子垃圾拆解区周边住宅室内灰尘重金属对儿童的非致癌健康风险评估[J]. 中华预防医学杂志,2019(4):360-364. DOI: 10.3760/cma.j.issn.0253-9624.2019.04.006

    CHEN X C, ZHU X H, LIN B G, et al. Children’s non-carcinogenic health risk assessment of heavy metals exposure to residential indoor dust around an e-waste dismantling area in South China[J]. Chinese Journal of Preventive Medicine,2019(4):360-364. DOI: 10.3760/cma.j.issn.0253-9624.2019.04.006

    [26] 冯茜丹, 刘志磊, 陈启宇, 等. PM10中重金属的健康风险评估及修正方法比较[J]. 中国环境科学,2022,42(10):4880-4888. DOI: 10.3969/j.issn.1000-6923.2022.10.046

    FENG X D, LIU Z L, CHEN Q Y, et al. Comparison of health risk assessment and correction methods of heavy metals in PM10[J]. China Environmental Science,2022,42(10):4880-4888. DOI: 10.3969/j.issn.1000-6923.2022.10.046

    [27] 环境保护部. 土壤和沉积物12种金属元素的测定 王水提取-电感耦合等离子体质谱法: HJ 803—2016 [S]. 北京: 中国环境科学出版社, 2016.
    [28] 郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学,2021,41(1):431-441. DOI: 10.3969/j.issn.1000-6923.2021.01.049

    GUO Z J, ZHOU Y L, WANG Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District[J]. China Environmental Science,2021,41(1):431-441. DOI: 10.3969/j.issn.1000-6923.2021.01.049

    [29]

    HUANG Y, CHEN Q, DENG M, et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China[J]. Journal of Environmental Management,2018,207(1):159-168.

    [30]

    United States Environmental Protection Agency (US EPA). Guidelines for exposure assessment[S]. Washington D C: Risk Assessment Forum, United States Environmental Protection Agency, 1992.

    [31] 生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版社, 2019.
    [32] 环境保护部. 中国人群暴露参数手册: 成人卷[M]. 北京: 中国环境出版社, 2013.
    [33]

    CHEN L, ZHOU M, WANG J, et al. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: evaluation of pollution level and probabilistic health risks[J]. Science of the Total Environment,2022,835:155441. DOI: 10.1016/j.scitotenv.2022.155441

    [34]

    LI F J, YANG H W, AYYAMPERUMAL R, et al. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China[J]. Chemosphere,2022,308:136396. DOI: 10.1016/j.chemosphere.2022.136396

    [35]

    MUMTAZ M M, DURKIN P R. A weight-of-evidence approach for assessing interactions in chemical mixtures[J]. Toxicology and Industrial Health,1992,8(6):377-406. DOI: 10.1177/074823379200800604

    [36]

    HEPP N M, MINDAK W R, GASPER J W, et al. Survey of cosmetics for arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel content[J]. Journal of Cosmetic Science the Official Journal of the Society of Cosmetic Chemists,2014,65(3):125-145.

    [37]

    POHL H R, MUMTAZ M M, SCINICARIELLO F, et al. Binary weight-of-evidence evaluations of chemical interactions: 15 years of experience[J]. Regulatory Toxicology and Pharmacology, 2009, 54(3): 264-271.

    [38]

    TSDR. Interaction profile for arsenic, cadimum, chromium, and lead [EB/OL]. (2018-10-12)[2023-08-10]. https://www.atsdr.cdc.gov/interactionprofiles/ip-metals1/ip04-p.pdf.

    [39]

    ETTLER V, KŘíBEK B, MAJER V, et al. Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia)[J]. Journal of Geochemical Exploration,2012,113:68-75. DOI: 10.1016/j.gexplo.2011.08.001

    [40]

    DU B Y, ZHOU J, LU B X, et al. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China[J]. Science of the Total Environment,2020,720:137585. DOI: 10.1016/j.scitotenv.2020.137585

    [41] 韩天富, 柳开楼, 黄晶, 等. 近30年中国主要农田土壤pH时空演变及其驱动因素[J]. 植物营养与肥料学报,2020,26(12):2137-2149.

    HAN T F, LIU K L, HUANG J, et al. Spatio-temporal evolution of soil pH and its driving factors in the main Chinese farmland during past 30 years[J]. Plant Nutrition and Fertilizer Science,2020,26(12):2137-2149.

    [42] 曹雪莹, 张莎娜, 谭长银, 等. 中南大型有色金属冶炼厂周边农田土壤重金属污染特征研究[J]. 土壤,2015,47(1):94-99. DOI: 10.13758/j.cnki.tr.2015.01.015

    CAO X Y, ZHANG S N, TAN C Y, et al. Heavy metal contamination characteristics in soils around a nonferrous metal smelter in central southern China[J]. Soils,2015,47(1):94-99. DOI: 10.13758/j.cnki.tr.2015.01.015

    [43]

    HU Y N, CHENG H F, TAO S. The challenges and solutions for cadmium-contaminated rice in China: a critical review[J]. Environment International,2016,92-93:515-532. DOI: 10.1016/j.envint.2016.04.042

    [44]

    WANG C, LI W, YANG Z, et al. An invisible soil acidification: critical role of soil carbonate and its impact on heavy metal bioavailability[J]. Scientific Reports,2015,5:12735. DOI: 10.1038/srep12735

    [45] 张敬雅, 李湘凌, 章凌曦, 等. 安徽庐江县砖桥潜在富硒土壤重金属元素空间变异与来源[J]. 环境科学研究,2019,32(9):1594-1603. DOI: 10.13198/j.issn.1001-6929.2019.04.02

    ZHANG J Y, LI X L, ZHANG L X, et al. Spatial variations and source apportionment of heavy metals in potential selenium-enriched soils in Zhuanqiao Village Lujiang County Anhui Province, China[J]. Research of Environmental Sciences,2019,32(9):1594-1603. DOI: 10.13198/j.issn.1001-6929.2019.04.02

    [46] 王静, 魏恒, 潘波. 中国农田土壤Cd累积分布特征及概率风险评价[J]. 环境科学,2023,44(7):4006-4016.

    WANG J, WEI H, PAN B. Accumulation characteristics and probabilistic risk assessment of Cd in agricultural soils across China[J]. Environmental Science,2023,44(7):4006-4016.

    [47] 王斐, 黄益宗, 王小玲. 江西某铜矿冶炼厂周边土壤重金属生态风险评价[J]. 环境化学, 2014, 33(7): 1066-1074.

    WANG F, HUANG Y Z, WANG X L, et al. Ecological risk assessment of heavy metals in surrounding soils of a copper smelting plant in Jiangxi Province [J]. Environmental Chemistry 2014, 33(7): 1066-1074.

    [48] 张施阳. 基于GIS的上海市不同功能区土壤重金属污染评价及健康风险评估[J]. 环境工程技术学报,2022,12(4):1226-1236. DOI: 10.12153/j.issn.1674-991X.20210278

    ZHANG S Y. Assessment of soil heavy metal pollution and health risk in different functional areas of Shanghai City based on GIS[J]. Journal of Environmental Engineering Technology,2022,12(4):1226-1236. DOI: 10.12153/j.issn.1674-991X.20210278

    [49]

    CHEN W, CHANG A C, WU L. Assessing long-term environmental risks of trace elements in phosphate fertilizers[J]. Ecotoxicology and Environmental Safety,2007,67(1):48-58. DOI: 10.1016/j.ecoenv.2006.12.013

    [50]

    CAI L M, WANG Q S, LUO J, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China[J]. Science of the Total Environment,2019,650(1):725-733.

    [51] 陈瑜佳, 屈星辰, 张斌, 等. 香河县农田土壤重金属污染生态与健康风险评价[J]. 环境科学,2022,43(12):5728-5741.

    CHEN Y J, QU X C, ZHANG B, et al. Ecological and health risk assessment of heavy metal pollution in farmland soil of Xianghe County[J]. Environmental Science,2022,43(12):5728-5741.

    [52] 刘娅君, 李彩霞, 梅楠, 等. 三峡库区稻田土壤重金属污染特征及风险评价[J]. 环境科学,2023,44(6):3520-3530. DOI: 10.13227/j.hjkx.202207115

    LIU Y J, LI C X, MEI N, et al. Characteristics and risk evaluation of heavy metal contamination in paddy soils in the Three Gorges Reservoir Area[J]. Environmental Science,2023,44(6):3520-3530. DOI: 10.13227/j.hjkx.202207115

    [53] 王琴, 何云翔, 龚贵东, 等. Cr(Ⅲ)和Cr(Ⅵ)的表观遗传毒性分析[J]. 皮革科学与工程,2022,32(4):47-53.

    WANG Q, HE Y X, GONG G D, et al. Epigenetic toxicity analysis of Cr(Ⅲ) and Cr(Ⅵ)[J]. Leather Science and Engineering,2022,32(4):47-53.

    [54]

    CHAKRABORTY R, RENU K, ELADL M A, et al. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents[J]. Biomedicine & Pharmacotherapy,2022,151:113119.

    [55] 田稳, 宗大鹏, 方成刚, 等. 西南典型菜地土壤重金属健康风险和毒性效应[J]. 中国环境科学,2022,42(10):4901-4908. DOI: 10.3969/j.issn.1000-6923.2022.10.048

    TIAN W, ZONG D P, FANG C G, et al. Health risk and toxic effect of heavy metals in soils from typical vegetable planting areas in southwest China[J]. China Environmental Science,2022,42(10):4901-4908. DOI: 10.3969/j.issn.1000-6923.2022.10.048

    [56]

    REN Z Q, XIAO R, ZHANG Z H, et al. Risk assessment and source identification of heavy metals in agricultural soil: a case study in the coastal city of Zhejiang Province, China[J]. Stochastic Environmental Research and Risk Assessment,2019,33(11):2109-2118.

    [57]

    ALI L, RASHID A, KHATTAK S A, et al. Geochemical control of potential toxic elements (PTEs), associated risk exposure and source apportionment of agricultural soil in Southern Chitral, Pakistan[J]. Microchemical Journal,2019,147:516-523. DOI: 10.1016/j.microc.2019.03.034

    [58] 左甜甜, 方翠芬, 金红宇, 等. 靶器官毒性剂量法在玉竹中铅、镉和砷联合暴露评估中的应用[J]. 中国新药杂志,2022,31(7):639-644. DOI: 10.3969/j.issn.1003-3734.2022.07.005

    ZUO T T, FANG C F, JIN H Y, et al. Application of target-organ toxic dose modification of HI method in the assessment of combined exposure to lead, cadmium and arsenic in Polygonatum odoratum (MilL) Druce[J]. Chinese Journal of New Drugs,2022,31(7):639-644. DOI: 10.3969/j.issn.1003-3734.2022.07.005

    [59]

    MARLOWE M, STELLERN J, ERRERA J, et al. Main and interaction effects of metal pollutants on visual-motor performance[J]. International Archives of Occupational and Environmental Health,1985,40(4):221-225. DOI: 10.1080/00039896.1985.10545922

    [60]

    LOCKKETT C J, LEARY W P. Neurobehavioural effects in rats fed low doses of cadmium and lead to induce hypertension[J]. South African Medical Journal,1986,69:190-192.

    [61]

    SAXENA D K, MURTHY R C, SINGH C, et al. Zinc protects testicular injury induced by concurrent exposure to cadmium and lead in rats[J]. Research Communications in Chemical Pathology and Pharmacology,1989,64(2):317-329.

    [62]

    ELSENHANS B, SCHMOLKE G, KOLB K, et al. Metal-metal interactions among dietary toxic and essential trace metals in the rat[J]. Ecotoxicology and Environmental Safety,1987,14(3):275-287. DOI: 10.1016/0147-6513(87)90071-6

    [63]

    MAHAFFEY K R, FOWLER B A. Effects of concurrent administration of lead, cadmium, and arsenic in the rat[J]. Environmental Health Perspectives,1977,19:165-171. DOI: 10.1289/ehp.7719165

    [64]

    BLISS C I. The toxicity of poisons applied Jointly[J]. Annals of Applied Biology,1939,26(3):585-615. DOI: 10.1111/j.1744-7348.1939.tb06990.x

    [65]

    MAHAFFEY K R, CAPAR S G, GLADEN B C, et al. Concurrent exposure to lead, cadmium, and arsenic: effects on toxicity and tissue metal concentrations in the rat[J]. Journal of Laboratory and Clinical Medicine,1981,98(4):463-481. ⊕

  • 期刊类型引用(1)

    1. 汪洋. 地表水中重金属离子监测技术对比分析. 绿色科技. 2025(02): 206-212 . 百度学术

    其他类型引用(0)

图(5)  /  表(4)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  121
  • PDF下载量:  59
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-09-26
  • 录用日期:  2023-10-24
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2024-01-19

目录

/

返回文章
返回