Abstract:
To promote the synergetic reduction technologies of pollution and carbon, the ironmaking process technology was taken as the research object, and the synergistic benefits of source and process-control technologies, end treatment technologies, and low-carbon technologies were evaluated from three perspectives of synergy level, cost-benefit, and environmental impact. In terms of synergy between pollution abatement and carbon reduction, the source and process-control energy-saving technologies could effectively promote the synergistic reduction of pollutants and carbon emissions of the ironmaking process, while end treatment technologies could not synergistically reduce pollutants and carbon emissions. Specifically, the green hydrogen smelting technology and flux-based pellet preparation technology had a high degree of synergy in reducing pollution and carbon emissions. The injection coke oven gas technology, blast-furnace gas recovery technology, and dual preheating of the hot blast furnace could synergistically reduce VOCs and carbon emissions. Under China's current carbon trading prices, energy-saving technologies and pollutant treatment technologies could be popularized according to the cost-benefit analysis. The cost of green hydrogen smelting and CCS technologies was declining with the rise of carbon trading prices. Green hydrogen smelting and pollutant treatment technologies were the most effective ways to reduce environmental impact, while other energy-saving technologies could also correspondingly reduce environmental impact. Under existing conditions, the implementation of CCS technologies would increase environmental impact. Based on the assessment of synergy between pollution abatement and carbon reduction, economic benefits and environmental benefits, the source prevention and energy-saving technologies in the ironmaking process could be promoted as China's current pollution reduction and carbon reduction synergy technologies. With the increase in carbon emission trading prices and green transformation in the future, green hydrogen smelting and CCS technologies would have great application prospects.