Research progress on environmental and ecological impacts of wastewater treatment plant reclaimed water discharge and reuse
-
摘要:
污水处理厂再生水是宝贵的水资源,再生水回用既可以缓解水资源短缺问题,又能提高水资源利用率。虽然污水处理厂再生水可以达到相关水质标准,但仍含有较多的营养物质、盐分、有机物和重金属,是河湖水体的重要污染源,并通过补给河湖水体及农业灌溉途径对生态环境和人体健康构成潜在风险。综述了污水处理厂再生水回用于河湖生态补水以及农业灌溉场景下,对河流水环境、水生态、土壤理化性质、土壤微生物群落、农作物产量和品质的影响,结果显示:1)再生水回补河流能够改善河流水环境质量并提高水体的自净能力;2)再生水灌溉能够有效减少肥料的施用量并增加土壤养分,提高土壤肥力;3)长期再生水灌溉能够增加土壤微生物生物量和活性,并改变微生物群落的结构和功能;4)再生水中富含的营养物质能够为作物提供生长所需的养分并促进作物的生长和产量,但应避免养分过量供应。在当前水资源日益短缺的背景下,再生水有很大的利用前景,但应充分评估其环境风险并采取相应预防措施从而安全高效地利用再生水。
Abstract:Reclaimed water from sewage treatment plants is a valuable water resource, and reclaimed water reuse can not only alleviate the problem of water shortage but also improve water resource utilization. Although the reclaimed water from sewage treatment plants can meet the relevant water quality standards, it still contains more nutrients, salts, organic matter and heavy metals, which is an important source of pollution in rivers and lakes, and poses potential risks to the ecological environment and human health through the recharge of rivers and lakes and agricultural irrigation. The effects of reclaimed water from sewage treatment plants reuse on the river water environment, water ecology, soil physical and chemical properties, soil microbial community, and crop yield and quality when it was reused for ecological water replenishment of rivers and lakes and agricultural irrigation were reviewed. The main conclusions were as follows: 1) Reclaimed water replenishment in rivers could improve the quality of river water environment and enhance the self-purification capacity of water bodies. 2) Reclaimed water irrigation could effectively reduce the application of fertilizer, increase soil nutrients and improve soil fertility. 3) Long-term reclaimed water irrigation could increase soil microbial biomass and activity and change the structure and function of microbial communities. 4) The nutrients rich in reclaimed water could provide crops with nutrients needed for growth and promote the growth and yield of crops, but excessive supply of nutrients should be avoided. In the context of the current increasing scarcity of water resources, reclaimed water had great potential for utilization, but its environmental risks should be fully assessed, and corresponding precautions should be taken to use reclaimed water safely and efficiently.
-
水资源是人类社会发展中不可或缺的战略资源。在全球人口快速增长、世界经济高速发展以及全球气候变暖的背景下,水资源短缺问题日益突出,用水供需矛盾进一步加剧[1]。据联合国水资源组织统计,自20世纪80年代起,全球用水量每年以1%的速度增加,加剧了全球范围内水资源的短缺[2]。目前全球约有36亿人面临着水资源短缺和水环境污染问题,据预测该数字在2050年可能增长到48亿~57亿[3]。而气候变暖又从根本上改变全球热量、水分的循环和平衡,进一步加剧了全球水资源危机。同时,联合国粮食及农业组织提出,在过去20年,全球人口大幅增多,而人均淡水资源可供量却减少了20%以上。全球农业地区有超过12亿人面临严重的干旱问题,超过60%的灌溉农田承受着巨大的水资源压力[4]。据统计,农业用水占全球用水量的60%以上,农业需要大量水资源来确保粮食生产满足世界人口不断增长的需求,全球水资源的短缺以及气候变化引起的干旱频发,致使水资源危机严重威胁全球农业生态系统及粮食安全[5]。在水资源危机的背景下,再生水的利用,不仅能够减少水资源浪费、提高水资源利用效率,还有助于城市区域的可持续发展。世界上的大部分国家和地区已加强了对再生水的关注,特别是以色列、新加坡、日本等水资源短缺国家,采取了一系列再生水利用措施,一方面减少了水资源浪费,另一方面在一定程度上控制了污水直排的环境污染问题[6]。
在缺水或水源不足的城市,再生水是重要的非常规水资源,可用于补充地表水资源量和水生态恢复,在水资源污染严重且短缺的情况下,再生水循环利用在社会、经济和环境效益方面具有显著优势[7]。同时,在水资源短缺的情况下,再生水作为唯一一种供给稳定且总量持续增长的水源,将其回用于农田灌溉,可以有效缓解农业用水压力,提高水资源承载力以应对水资源短缺问题。据预测,2030年再生水利用总量将达到850亿~1 060亿m3[8]。此外,农业过程中使用再生水能够避免其直接排放而污染地表水体,最大限度地减少其环境影响。研究表明,经过充分处理的污水可安全用于农业灌溉[9],再生水灌溉已在世界各地得到推广[10-14]。
我国水资源量仅占世界水资源总量的5.1%,人均水资源量仅为世界平均水平的28%[15]。水资源短缺问题制约着我国生态环境质量和经济社会可持续发展。根据住房和城乡建设部的统计数据[16],2011—2021年我国再生水利用量在城市污水处理量中占比较小(图1)。同时2022年我国城镇污水排放量约754亿m3,其中再生水利用量仅为151亿m3,再生水后续开发利用潜力巨大[17]。基于上述情况,由国家发展和改革委员会发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》[18]明确提出,要鼓励再生水利用,全面推进污水资源化利用,促进解决水资源短缺问题,推动高质量发展、可持续发展。因此,充分利用再生水资源,对于缓解水资源短缺问题、改善水生态环境具有重要意义。
图 1 2011—2021年我国城市污水处理量及再生水利用量[16]Figure 1. The amount of urban sewage treatment and reclaimed water utilization in China from 2011 to 2021虽然再生水经过净化后能达到相关水质标准,但由于其含有较高的营养物[19]、盐分[20]、重金属[21]、药品[22]、抗生素[23]等物质,补给河湖水体及农业灌溉存在潜在环境风险和人体健康风险[24]。因此,再生水的安全利用问题一直令人担忧。尤其是再生水中氮、磷等过量的营养物质可能会导致自然水体的各种生态问题,如增加藻类生物量,加剧水体富营养化,扰乱微生物群落的组成和功能[25-26]等。尽管在相关方面已有大量研究,但再生水回用对水生态和水环境的影响仍不清晰。因此,有必要深入了解再生水排放及回用的环境和生态影响。
本文检索了大量国内外相关文献,利用中国知网(CNKI)和Elsevier ScienceDirect数据库,以篇名含“再生水回用”“再生水补给”“再生水灌溉”“reclaimed water reuse”“reclaimed water recharge”“reclaimed water irrigation”进行检索;时间选定为2000-01-01—2024-05-06;文献来源选定为SCI期刊、EI来源期刊、核心期刊、CSSCI和CSCD;数据来源为相关期刊、权威报道和政府部门报告。对所得检索文献的研究内容、实验方法、数据处理以及研究结果进行系统地归纳和整理,并总结再生水对受纳水体水生态环境,再生水灌溉对土壤理化性质、土壤微生物群落及农作物的影响,以期为再生水安全、高效回用提供科学依据。
1. 再生水国内外应用现状
20世纪80年代起,许多发达国家和发展中国家已开展再生水回用研究。其中在再生水利用技术等方面以美国、日本、以色列等为代表的发达国家最为典型,干旱半干旱地区如阿拉伯半岛等地区,再生水回用技术也较为成熟[27-29]。
目前,世界各国正逐步将再生水回用于生态补给和农业灌溉。作为世界上最早实现污水再生回用的国家之一,美国的再生水利用体系完备,无论是在科学研究、法规还是技术指南方面,都处于全球领先地位,应用范围也更为广泛。据统计,美国约70%的污水通过回用工程得到有效利用,其中60%以上的再生水用于农业灌溉[30]。日本虽然年均降水量高达1 714 mm,但因其四面环海的地理位置、经济迅速发展等原因,其水资源短缺问题普遍存在且日趋严重。自20世纪80年代起,日本政府便大力提倡再生水回用,并规划建设了中水回用管道系统,经过处理后的中水主要供应绿地灌溉、农业用水以及河道补给等[31]。同样由于地理位置原因,以色列年均降水量不足380 mm,是世界上水资源最匮乏的国家之一,其人均淡水资源占有量不足300 m3/a[32]。但以色列却是世界上再生水利用率较高的国家之一,72%的市政污水(其中接近100%的生活污水)得到再生回用[33],其中约40%直接用于农业灌溉,约60%用于地下水回灌和河道补给[34]。
目前,我国再生水主要用途包括农业灌溉、娱乐用水、城市杂用、景观绿化、工业用水和地下水补给等,其中,农业灌溉和娱乐用水的使用占主导地位,比例约占60%。考虑到传统水资源的限制,预计未来再生水在农业灌溉和景观用水方面的比例将持续上升[35]。为应对水资源短缺问题,尤其是在缺水的北方城市,我国正向最大程度利用再生水而做出努力。如2021年生态环境部会同国家发展和改革委员会、住房和城乡建设部、水利部发布了《区域再生水循环利用试点实施方案》[36],以京津冀地区、黄河流域等缺水地区为重点,选择再生水需求量大、再生水利用具备一定基础且工作积极性高的地级及以上城市开展试点,有利于缓解区域水资源供需矛盾。我国90%以上的再生水灌溉区集中在水资源严重短缺的“四河”(黄河、淮河、海河、辽河)流域[37],且主要集中在北方大、中城市的近郊区。考虑到我国城镇污水处理能力已达2.17亿m3/d,城镇污水处理率达92%,因此,大量来源稳定的城镇再生水将成为我国农业用水的重要补充水源[38]。北京是我国淡水资源较为紧张的大城市之一,人均水资源量为135 m3左右,仅为全国的1/16,但其同样是我国城市污水处理率及再生水利用率较高的城市之一,2010年再生水灌溉面积达到3.33万hm2,再生水农业年利用量超过3亿m3[39]。山东省2021年污水处理回用量达到11.20亿m3,再生水的用途主要为城市绿化、景观环境和湿地补水等[40]。苏州作为经济发达城市,水资源消耗量巨大,水质型缺水问题严重,2020年全市污水处理量达11.5亿m3,再生水回用率为38.69%,主要用于景观绿化用水,再生水利用潜力巨大[41]。2020年黑龙江省再生水利用量约占非常规水资源利用量的74.2%,污水处理回用量较高[42]。再生水的推广应用不仅缓解了水资源压力,同时也推动了农业和城市的可持续发展。
2. 再生水对受纳水体的影响
在水资源日益紧缺的背景下,再生水作为城市用水的替代水源,在河湖补水、绿化灌溉等领域有巨大的利用潜力[43]。国内外已有许多再生水回用成功的实例[44-47]。然而,再生水即使经过净化处理后,仍然存在部分有机物、氮、磷等潜在污染物,其浓度远高于GB 3838—2002《地表水环境质量标准》中Ⅴ类水质标准[48](图2),可能会引发各种水生态系统问题[49]。如过量的氮、磷会刺激藻类大量生长,加剧地表水体富营养化,导致藻华暴发[50]。因此,城市水体的再生水补给,应全面考虑生态状况、服务功能、生态需水量、再生水水质、再生水补充对水体的影响以及生态系统响应等诸多因素。
2.1 对水环境的影响
通过利用再生水补给河湖水体,不仅能够改善水域景观,还能改善水环境质量,提升河湖水生态健康水平。已有研究表明,污水处理厂再生水长期对河流进行生态补水后,对河流水质、水生态会产生影响,补水后河流的水环境质量良好,证明再生水能够有效改善河流水环境质量并提高水体自净能力,有助于河流水生态健康的提升[51]。An等[52]以天然河流、再生水与生活污水共同干扰河流、完全再生水补给河流、污染城市河流作为研究对象,评估再生水利用对水体自净能力的影响,结果表明,污染城市河流的化学需氧量(COD)和总磷(TP)浓度分别为55.25和0.87 mg/L,而在再生水补给河流后,河流中COD与TP浓度分别降低至31.16和0.18 mg/L。再生水利用能够改善污染严重的城市河流水质,这可能是由于再生水补给过程的稀释作用[53]。
由于污水处理厂再生水具有富含氮、磷等营养物质的特点,在长期再生水补给河湖水体过程中,氮、磷易富集于水体底泥中,并持续释放而影响河湖水体。如刘轩等[54]以2个长期分别使用再生水和地表水补给的城市景观水体为研究对象,探究在不同的补给水条件下底泥对藻类生长的影响,发现长期再生水补给条件下,上覆水中的叶绿素a、氮、磷浓度明显高于地表水补给条件,这可能是由于长期受纳再生水的水体底泥中营养物质含量更高。因此,长期再生水补给相较于地表水补给更容易导致沉积物中营养物质的释放,从而引发水体富营养化风险,在长期再生水补给的城市水体中,有必要对水体沉积物进行定期清除。
2.2 对水生态系统的影响
微生物群落是河湖生态系统的重要组成部分,其受到外源输入污染物的极大影响,也会积极地参与污染物的转化过程[55]。在淡水生物群落中,藻类和细菌群落占主导地位,对河流生态系统的能量流动和养分循环起到至关重要的作用[56]。近年来,对受纳再生水补给的河流生态系统中的藻类或细菌群落的研究受到关注。研究表明,富含氮、磷和有机物的再生水通过河湖补给会增加水体藻类生物量[57],甚至发生藻华风险[58];也有研究发现,再生水可影响受纳水体中的微生物群落[59],特别是促进具有碳降解、硝化、反硝化和磷转化的功能性细菌的生长[60-61],通过去除营养物质达到增强水体自净能力的目的。部分研究还比较了藻类和细菌群落对天然水库和湖泊环境变化的敏感性[62-63],观察到对于不断变化的理化特征如氮、磷、温度和溶解氧等,藻类群落往往比细菌群落表现出更强的适应性变化,细菌群落对环境变化具有更高的时空稳定性。Du等[64]利用高通量测序技术,系统地研究了细菌和藻类对再生水补给的响应,发现再生水能有效改善受纳河流水质并提高城市河流的自净能力,重塑细菌和藻类群落的生物多样性、复杂性和组成,由于再生水的输入,下游段细菌和藻类群落的稳定性和复杂性均有所减弱,其中,重塑细菌和藻类群落的主要驱动因素是氮、磷。同样有学者证实藻类的动态变化可能影响细菌群落的组成和功能,进而改变当地生态系统的生物地球化学循环[63]。Xie等[61]通过研究水库上下游河流沉积物中的微生物群落结构,发现与上下游河流点位相比,污水处理厂出水排放口附近沉积物中的微生物种群数量更高,但生物多样性更低,并且随着再生水的流入,优势微生物种由Weissella转变为norank-f-Anaerolineaceae、 norank-c-KD4–96 和norank-c-Subgroup_6,表明污水处理厂再生水排放极大地影响了当地的微生物群落和生物多样性,尤其是排放口周围的局部微生物群落结构,而总有机碳(TOC)被视为群落变化的主要驱动因素。Meng等[65]的研究也表明,TOC是影响再生水补给河流中微生物群落组成的重要因素。由于理化条件、地理条件、水文条件和微生物响应等存在差异,可能导致不同地区再生水补给系统中群落的响应存在差异。
3. 再生水灌溉对土壤理化性质的影响
再生水灌溉已在全球范围内得到广泛应用。将再生水用于农业灌溉,不仅能够降低土壤污染的风险[66],还有助于保护淡水资源。然而,再生水灌溉对土壤的影响程度取决于其水质以及其他外部条件。探究再生水灌溉对土壤造成的潜在影响,对于提高再生水资源利用效率,减少环境风险具有重要意义。
3.1 对土壤物理性质的影响
国内外针对再生水灌溉对土壤物理性质的影响进行了诸多研究。再生水中存在的盐分、悬浮无机物、有机物等会对土壤容重、颗粒组成、含水率以及孔隙度等产生影响[67-68]。部分学者认为利用再生水进行灌溉会降低土壤孔隙度,如李晓娜等[69]研究发现,再生水中含盐量过高,灌溉会使土粒分散程度增加,从而使土壤容重增加,土壤毛管孔隙度降低,并导致土壤板结。也有学者持不同观点,认为再生水灌溉会使土壤孔隙度增加,如Biswas等[70]研究发现,相比于淡水灌溉,废水灌溉会使土壤容重降低2.83%,而土壤孔隙度提高6.02%,进而提高土壤的不饱和导水性和保水能力。也有学者指出,土壤容重和孔隙度还与再生水灌溉时长有关,在短期(6个月)再生水灌溉下,随着土层深度增加,土壤容重有所增大,土壤孔隙度和田间持水量均减小;然而在长期(6年)再生水灌溉下,土壤容重略有减小,土壤孔隙度和田间持水量则略有增大[71]。而再生水中含有的微生物、有机质和盐分含量不仅仅会影响土壤孔隙度,还会影响土壤结构。再生水中富含的微生物和有机质有利于改善土壤结构,而其中的有机质会被土壤微生物分解并产生腐殖质,有利于形成土壤团粒和团聚体结构[72]。再生水灌溉可以提高表层土壤微团聚体的稳定性,其原因可能与土壤有机质(SOM)含量较高有关,但由于钠的影响再生水的渗透率降低[73]。土壤性质、灌溉方式以及再生水水质等都会引起土壤物理性质发生改变,相关研究多但不够细致和深入,未来有必要进一步探讨再生水灌溉对土壤物理性质的影响机制。
3.2 对土壤化学性质的影响
部分学者提出,因再生水水质和土壤类型等存在差异,再生水灌溉并不会明显影响土壤pH[74],因为土壤本身就是缓冲体系,能在一定范围内适应外界环境变化。然而,也有学者发现再生水灌溉能改变土壤pH。梁薇[75]在对北京市再生水利用现状调查的基础上,通过模拟土柱试验,对利用再生水灌溉园林绿地生态系统进行研究,发现在3种不同水质灌溉条件下,土壤的pH均较灌溉前有所升高,且不同灌溉水质下土壤的pH关系为高盐再生水>再生水>自来水。pH升高意味着土壤中微量元素及重金属的生物可利用性降低,植物吸收效率降低[76]。而李中阳等[77]通过在温室条件下采用盆栽试验方法,利用全再生水和混合再生水灌溉黑麦草的研究发现,利用全再生水和混合再生水进行灌溉都会显著增加土壤有机质含量,并显著降低了土壤的pH。由于再生水水质、土壤土质、灌溉时间等差异,使得灌溉土壤pH有所变化,而这些变化主要是由再生水中所含养分和盐分导致。
再生水中含有大量的氮、磷、钾等营养元素,大部分学者认为再生水灌溉能有效减少肥料施用并提高土壤肥力,降低施用肥料所引发的环境风险。李竞等[78]利用8种河北省常见园林植物进行再生水灌溉试验,发现短期利用再生水灌溉会显著增加土壤全盐量、水溶性钠和氯离子含量,并且在不同程度上促进园林植物的生长和根际土壤养分、酶活性的提高。再生水灌溉还能改善土壤环境,由于其能溶解土壤中的矿质氮,从而有效降低土壤的氮污染,减少氮肥用量,增加土壤肥力[79]。而Chen等[80]通过对北京市7个具有不同再生水灌溉历史的区域进行实地考察,也同样发现再生水灌溉能改善土壤养分条件,使SOM、全氮和速效磷含量均增加6%~17%,并且灌溉年限越长,土壤养分条件和土壤生物活性越强,土壤健康状况改善越显著。但也有学者研究发现,利用再生水进行短期灌溉并不会使氮素大量留存于土壤中,且不会显著提高土壤的供磷水平,对土壤肥力无显著影响[81]。但是,由于再生水灌溉对土壤的影响不仅仅取决于再生水的质量,还与土壤类型、气候条件、作物种类及生长情况有关,并且再生水灌溉时长和灌溉方式等都会在一定程度上影响土壤肥力,导致关于再生水灌溉对土壤肥力的研究结果出现差异。
3.3 对土壤微生物群落的影响
土壤微生物群落在土壤功能中起着基础性作用,如元素循环和污染物降解等,是土壤生态系统的重要指标和核心组成部分,既受污染物的影响又参与污染物的迁移和转化[55]。由于再生水中含有微生物、有机污染物和重金属等物质,会对微生物的种类、数量和活性产生影响[82]。与地下水灌溉相比,已证实再生水灌溉在微生物多样性和种间关系方面可以对土壤微生物群落产生影响[83]。利用再生水灌溉可以促进土壤微生物的活性,土壤微生物生物量是生物地球化学循环和有机化合物循环的基本环节,最终确保土壤生物肥力。土壤中的酶主要来自细菌和真菌,参与碳、氮、磷、硫的生物地球化学循环,酶活性的变化能够反映土壤中化学、生物过程及污染物降解的程度[84-85]。Mkhinini等[86]通过对突尼斯中东部地区的不同土壤进行了为期20年的再生水灌溉,来评估再生水灌溉对于酶活性的影响,发现长期利用再生水灌溉能够增加土壤微生物生物量并提高微生物代谢活性。也有学者发现,利用再生水能使大豆根际土壤中的土壤脲酶、磷酸酶活性和细菌、放线菌的数量显著增加[87]。此外,利用再生水灌溉还会影响土壤微生物种类和群落结构。龚雪[88]通过室内土柱模拟灌溉试验发现,利用再生水灌溉能够促进表层微生物数量和种类增加。Moulia等[89]利用不同质量的水(城市废水、人工湿地处理的污水、膜生物反应器处理的污水和自来水)进行农业灌溉,发现再生水灌溉的土壤细菌群落保持稳定,且灌溉土壤的微生物多样性和丰富度指数随着灌溉期的延长而增大。
另外,再生水灌溉的土壤中还可能出现重金属累积,影响土壤微生物功能,并可能减弱有机质矿化过程,影响微生物养分的可利用性[90]。除此之外,重金属还可能减少根系分泌物的释放,导致酶合成减少,从而改变土壤中微生物活性[91-92]。同时,再生水灌溉还可能引入外源微生物到土壤中,影响当地的微生物群落[93]。土壤中重金属的累积与重金属种类和灌溉时长紧密相关,应对再生水灌溉土壤进行定期监测和污染评价,并采取有效措施改变土壤理化性质,改善土壤pH,减少重金属富集,从而降低环境风险。
4. 再生水灌溉对农作物的影响
研究表明,再生水中富含的氮、磷等营养成分满足农作物的生长所需,符合农业用水需求[94]。徐桂红等[95]研究发现,再生水灌溉降低了番茄维生素C含量,增加了总酸、可溶性固体物、番茄红素和可溶性糖的含量,并对其光合作用及叶绿素产生有促进作用。此外,有学者研究发现利用再生水灌溉有利于提高番茄产量并增加番茄的营养指数,且不影响其果实品质[96],还能够提高辣椒的株高和茎粗等生长指标、水分利用效率和光合速率等光合指标,以及产量和肥料等生产力指标[97]。Ayoub等[98]通过连续4年使用地下水和再生水对橄榄树进行灌溉,发现再生水灌溉能显著改善橄榄树的果实质量和产量。除此之外,利用再生水灌溉还能够提高农作物的光合指标并以硝酸盐的形式提供氮,从而提高农作物的产量。
然而并非再生水灌溉对农作物的所有影响都是有益的,再生水灌溉在过量的养分供应时也可能对农作物生长产生危害。于辉等[99]对在鄂尔多斯地区利用再生水灌溉青贮玉米进行研究,通过将不同比例的雨水和再生水进行混合后灌溉面积相同的试验地,发现当雨水与再生水以2∶1混合时青贮玉米鲜草产量最高,而当再生水比例过高时,会对作物的产量产生抑制作用。
再生水中还存在难以被污水处理工艺降解的重金属、有机污染物等。由于重金属具有不可降解性、持久性、蓄积性、生物相容性和高毒性,易在水体和土壤等环境中累积,对植物生长及人类健康造成威胁[24]。现有研究表明,利用废水进行灌溉的区域土壤中存在明显的镉、锌、汞污染[100]。此外,废水灌溉下小麦中重金属含量也显著累积。与小麦植株其他部位相比,根系中镉、铬、铅、砷的含量较高,说明根系具有较强的吸收能力,可能产生明显的阻隔作用。同时,蔬菜可食用部位的镉、铬、铅和砷含量均高于GB 15618—1995《土壤环境质量标准》安全限值,其含有的高浓度重金属会对人体健康构成潜在威胁[101]。此外,再生水中还可能会携带激素、药物、有毒化合物等,直接或间接地与人体接触而导致各种健康问题,再生水灌溉后抗生素进入土壤,并在作物中检出抗生素耐药基因(ARGs)[102]。因此,应改进污水处理工艺以减少再生水中的有害污染物,降低植物中重金属累积的风险,从而减少对土壤、作物及人类健康的危害。目前对于再生水灌溉农作物的研究集中在对作物生理、产量、光合作用以及品质等指标上,但关于再生水灌溉后对人类健康潜在风险的评估研究较为缺乏。
5. 结论与展望
5.1 结论
将再生水用于河湖生态补水和农业灌溉,可以缓解用水压力、节约水资源、降低用水成本并二次利用营养物质。本文讨论了再生水回用于生态补水以及农业灌溉时,对受纳水体生态系统、土壤理化性质、微生物群落及农作物的影响,得出以下结论:1)再生水回补河流后,会对河流水生态系统产生显著影响,有助于改善河流水环境质量并提高水体的自净能力。同时,再生水补给还会促进碳降解、硝化、反硝化和磷转化微生物的生长,重塑微生物群落。2)再生水中的盐分、悬浮物、营养物等会对土壤容重、颗粒组成、含水率、孔隙度、pH、肥力等理化性质产生影响,但具体影响因土壤性质、灌溉方式、再生水水质等方面存在差异而不同。3)再生水灌溉会对土壤微生物的种类、数量和活性产生影响。长期再生水灌溉能够增加土壤微生物生物量,提高土壤微生物代谢活性,从而改变土壤微生物群落结构和功能。同时,应对再生水灌溉土壤中重金属进行定期监测和污染评价,降低潜在环境风险。4)再生水中富含的营养物质能够为农作物提供生长所需的养分,但若养分过量供应可能会产生毒性,再生水灌溉农作物时需要严格控制其营养物含量。
5.2 展望
再生水对受纳水体、灌溉土壤、农作物的影响程度不仅取决于再生水的质量,还取决于受纳水环境、土壤特性、气候、灌溉方式、作物类型等。在水资源短缺的情况下,再生水有巨大的利用潜力,但在实际利用中应充分评估其环境风险。未来可以开展以下研究:1)通过地理环境、气候、农作物等条件分析再生水回补及农业灌溉的影响,明确引起水质、土壤、作物变化的关键因子,为推广再生水回用于河湖补水及农业灌溉提供理论支持。2)随着环境中新污染物、抗生素、病毒等问题的加剧,亟须开发针对性的水处理技术以降低再生水回用风险。3)由于再生水回用的生态环境影响是潜在且长期的,建议未来对再生水回用区的水质、土壤、作物等进行长期监测以探索其长效影响机制,从而对再生水回用进行科学管理并有效控制其生态风险。4)建立再生水资源开发利用监测监督体系和评估体系,为再生水利用提供强有力的政策保障。
-
图 1 2011—2021年我国城市污水处理量及再生水利用量[16]
Figure 1. The amount of urban sewage treatment and reclaimed water utilization in China from 2011 to 2021
-
[1] QIU Z J, LI J S, ZHAO W X. Effect of applying sewage effluent with subsurface drip irrigation on soil enzyme activities during the maize growing season[J]. Irrigation and Drainage,2017,66(5):723-737. DOI: 10.1002/ird.2124
[2] 金银雪. 全球变暖下的水资源危机[J]. 生态经济,2020,36(6):5-8. [3] 王建华, 何国华, 何凡, 等. 对复杂水资源系统管理的认知与思考[J]. 中国水利,2024(2):10-16. DOI: 10.3969/j.issn.1000-1123.2024.02.004 WANG J H, HE G H, HE F, et al. Cognition and thinking on complex water resources system management[J]. China Water Resources,2024(2):10-16. DOI: 10.3969/j.issn.1000-1123.2024.02.004
[4] 李俊海. 全球水资源短缺与粮食危机[J]. 生态经济,2021,37(3):5-8. [5] FUKASE E, MARTIN W. Economic growth, convergence, and world food demand and supply[J]. World Development,2020,132:104954. DOI: 10.1016/j.worlddev.2020.104954
[6] 叶得万. 城市再生水利用途径和选择分析[J]. 农村经济与科技,2021,32(4):10-11. DOI: 10.3969/j.issn.1007-7103.2021.04.006 [7] ZHU Z F, DOU J. Current status of reclaimed water in China: an overview[J]. Journal of Water Reuse and Desalination,2018,8(3):293-307. DOI: 10.2166/wrd.2018.070
[8] 陈卫平, 吕斯丹, 张炜铃, 等. 再生(污)水灌溉生态风险与可持续利用[J]. 生态学报,2014,34(1):163-172. CHEN W P, LÜ S D, ZHANG W L, et al. Ecological risks and sustainable utilization of reclaimed water and wastewater irrigation[J]. Acta Ecologica Sinica,2014,34(1):163-172.
[9] SINGH A. A review of wastewater irrigation: environmental implications[J]. Resources, Conservation and Recycling,2021,168:105454. DOI: 10.1016/j.resconrec.2021.105454
[10] MANCUSO G, LAVRNIĆ S, TOSCANO A. Reclaimed water to face agricultural water scarcity in the Mediterranean Area: an overview using Sustainable Development Goals preliminary data[M]//Wastewater treatment and reuse: present and future perspectives in technological developments and management issues. Amsterdam: Elsevier, 2020: 113-143.
[11] WANG M, CHEN S B, CHEN L, et al. The responses of a soil bacterial community under saline stress are associated with Cd availability in long-term wastewater-irrigated field soil[J]. Chemosphere,2019,236:124372. DOI: 10.1016/j.chemosphere.2019.124372
[12] SINGH A. Soil salinization management for sustainable development: a review[J]. Journal of Environmental Management,2021,277:111383. DOI: 10.1016/j.jenvman.2020.111383
[13] PEÑA A, DELGADO-MORENO L, RODRÍGUEZ-LIÉBANA J A. A review of the impact of wastewater on the fate of pesticides in soils: effect of some soil and solution properties[J]. Science of the Total Environment,2020,718:134468. DOI: 10.1016/j.scitotenv.2019.134468
[14] YUAN Z G, OLSSON G, CARDELL-OLIVER R, et al. Sweating the assets: the role of instrumentation, control and automation in urban water systems[J]. Water Research,2019,155:381-402. DOI: 10.1016/j.watres.2019.02.034
[15] 张巍, 韩军, 周绍杰. 中国城镇居民用水需求研究[J]. 中国人口·资源与环境,2019,29(3):99-109. ZHANG W, HAN J, ZHOU S J. Water consumption of Chinese urban residents: from perspectives of micro data[J]. China Population, Resources and Environment,2019,29(3):99-109.
[16] 住房和城乡建设部. 2011—2021城乡建设统计年鉴[A/OL]. [2024-01-02]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/index.html. [17] 中央人民政府. 我国再生水利用提速 后续开发利用潜力大[EB/OL]. [2024-01-02]. https://www.gov.cn/zhengce/jiedu/tujie/202311/content_6915464.htm#:~. [18] 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[A/OL]. [2024-01-02]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202103/t20210323_1270124.htm. [19] LI C Z, LI B H, BI E P. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water: a case study in North China[J]. Science of the Total Environment,2019,668:1030-1037. DOI: 10.1016/j.scitotenv.2019.02.375
[20] CHEN W P, LU S D, JIAO W T, et al. Reclaimed water: a safe irrigation water source[J]. Environmental Development,2013,8:74-83. DOI: 10.1016/j.envdev.2013.04.003
[21] DENG S X, YAN X T, ZHU Q Q, et al. The utilization of reclaimed water: possible risks arising from waterborne contaminants[J]. Environmental Pollution, 2019, 254(Pt A): 113020.
[22] LYU S D, CHEN W P, QIAN J P, et al. Prioritizing environmental risks of pharmaceuticals and personal care products in reclaimed water on urban green space in Beijing[J]. Science of the Total Environment,2019,697:133850. DOI: 10.1016/j.scitotenv.2019.133850
[23] ZHONG Q L, CHEN Z, SHEN Q Y, et al. Occurrence of antibiotics in reclaimed water, and their uptake dynamics, phytotoxicity, and metabolic fate in Lolium perenne L.[J]. Science of the Total Environment,2023,904:166975. DOI: 10.1016/j.scitotenv.2023.166975
[24] 陈鸿芳, 余波平, 卢星星, 等. 芯片行业再生水灌溉矮牵牛的植物毒理效应及环境风险评价[J]. 环境工程技术学报,2024,14(3):921-932. DOI: 10.12153/j.issn.1674-991X.20230690 CHEN H F, YU B P, LU X X, et al. Phytotoxic effects and environmental risk assessment of petunia hybrida irrigated with reclaimed water from the chip industry[J]. Journal of Environmental Engineering Technology,2024,14(3):921-932. DOI: 10.12153/j.issn.1674-991X.20230690
[25] XIA Q W, HE J T, LI B H, et al. Hydrochemical evolution characteristics and genesis of groundwater under long-term infiltration (2007-2018) of reclaimed water in Chaobai River, Beijing[J]. Water Research,2022,226:119222. DOI: 10.1016/j.watres.2022.119222
[26] SUN J J, CHEN L, RENE E R, et al. Biological nitrogen removal using soil columns for the reuse of reclaimed water: performance and microbial community analysis[J]. Journal of Environmental Management,2018,217:100-109.
[27] AMIN MIR M, WAQAR ASHRAF M. The challenges and potential strategies of Saudi Arabia's water resources: a review in analytical way[J]. Environmental Nanotechnology, Monitoring & Management, 2023, 20: 100855.
[28] GIWA A, DINDI A. An investigation of the feasibility of proposed solutions for water sustainability and security in water-stressed environment[J]. Journal of Cleaner Production,2017,165:721-733. DOI: 10.1016/j.jclepro.2017.07.120
[29] HUSSAIN M I, AL-DAKHEEL A J, REIGOSA M J. Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd. ) plants: prospects for salinity tolerance and yield stability[J]. Plant Physiology and Biochemistry: PPB,2018,129:411-420. DOI: 10.1016/j.plaphy.2018.06.023
[30] 周立南. 再生水灌溉对浅层地下水水质影响研究及风险评估[D]. 徐州: 中国矿业大学, 2019. [31] 陆慧闽, 陈卓, 倪欣业, 等. 日本污水处理与再生利用现状分析[J]. 环境工程,2023,41(3):237-242. LU H M, CHEN Z, NI X Y, et al. Analysis of water reclamation and reuse in Japan[J]. Environmental Engineering,2023,41(3):237-242.
[32] SITTON D. Development of limited water resources: historical and technological aspects[R/OL]. [2024-01-02]. https://www.researchgate.net/publication/266183416_Development_of_Limited_Water_Resources_Historical_and_Technological_Aspects.
[33] 张春园, 赵勇. 实施污水资源化是保障国家高质量发展的需要[J]. 中国水利,2020(1):1-4. DOI: 10.3969/j.issn.1000-1123.2020.01.003 ZHANG C Y, ZHAO Y. The implementation of wastewater reuse is the need to ensure the high quality development of China[J]. China Water Resources,2020(1):1-4. DOI: 10.3969/j.issn.1000-1123.2020.01.003
[34] FRIEDLER E. Water reuse. an integral part of water resources management: Israel as a case study[J]. Water Policy,2001,3(1):29-39. DOI: 10.1016/S1366-7017(01)00003-4
[35] WANG Z, LI J S, LI Y F. Using reclaimed water for agricultural and landscape irrigation in China: a review[J]. Irrigation and Drainage,2017,66(5):672-686. DOI: 10.1002/ird.2129
[36] 生态环境部办公厅, 国家发展和改革委员会办公厅, 住房和城乡建设部办公厅, 等. 关于印发《区域再生水循环利用试点实施方案》的通知: 环办水体〔2021〕28号[A/OL]. [2024-01-02]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk05/202112/t20211231_965785.html. [37] 温慧娜, 高涵, 张翔, 等. 黄河流域区域再生水循环利用的制约因素和对策措施探讨[J]. 环境科学研究,2024,37(1):131-139. WEN H N, GAO H, ZHANG X, et al. Discussions on constraints and measures to promote the regional reclaimed water reuse in the Yellow River Basin[J]. Research of Environmental Sciences,2024,37(1):131-139.
[38] 李应海. 生活再生水灌溉对辣椒产量、品质及土壤离子的影响试验及数值模拟[D]. 银川: 宁夏大学, 2022. [39] 郑锦涛, 马涛, 刘九夫, 等. 再生水农业灌溉利用现状及影响研究[J]. 中国农村水利水电,2021(6):130-136. DOI: 10.3969/j.issn.1007-2284.2021.06.023 ZHENG J T, MA T, LIU J F, et al. Reclaimed water irrigation: a review[J]. China Rural Water and Hydropower,2021(6):130-136. DOI: 10.3969/j.issn.1007-2284.2021.06.023
[40] 宋美华, 安晓洁, 李妍妍. 山东省再生水利用配置现状及对策建议[J]. 山东水利,2023(10):10-12. SONG M H, AN X J, LI Y Y. Current situation of reclaimed water utilization and allocation and countermeasures in Shandong[J]. Shandong Water Resources,2023(10):10-12.
[41] 侯金甫, 方红远, 李艳明, 等. 苏州市再生水利用影响因素识别及潜力评估[J]. 南水北调与水利科技(中英文),2022,20(4):682-690. HOU J F, FANG H Y, LI Y M, et al. Identification of influencing factors and potential assessment of the reclaimed water utilization in Suzhou City[J]. South-to-North Water Transfers and Water Science & Technology,2022,20(4):682-690.
[42] 滕云, 李铁男, 富刚, 等. 黑龙江省非常规水源利用现状及对策建议[J]. 水利科学与寒区工程,2023,6(2):49-52. DOI: 10.3969/j.issn.2096-5419.2023.02.014 TENG Y, LI T N, FU G, et al. Current situation and countermeasures of unconventional water resources utilization in Heilongjiang Province[J]. Hydro Science and Cold Zone Engineering,2023,6(2):49-52. DOI: 10.3969/j.issn.2096-5419.2023.02.014
[43] 王茹雪, 陈天伟, 张明, 等. 银川市河湖生态补水的中水利用量研究[J]. 广东水利水电,2022(2):42-46. DOI: 10.11905/j.issn.1008-0112.2022.2.gdslsd202202009 WANG R X, CHEN T W, ZHANG M, et al. Study on utilization of reclaimed water for ecological water replenishment of rivers and lakes in Yinchuan[J]. Guangdong Water Resources and Hydropower,2022(2):42-46. DOI: 10.11905/j.issn.1008-0112.2022.2.gdslsd202202009
[44] 徐静. 基于生态修复视角的中水补给性城市河道景观设计研究: 以郑州市须水河景观修复设计为例[D]. 武汉: 华中科技大学, 2018. [45] 陆冬平, 梁汀, 蒋岚岚, 等. 城市污水处理厂再生水回用工程的工艺设计[J]. 中国给水排水,2012,28(8):35-38. DOI: 10.3969/j.issn.1000-4602.2012.08.009 LU D P, LIANG T, JIANG L L, et al. Design of reuse project of reclaimed water from municipal sewage treatment plant[J]. China Water & Wastewater,2012,28(8):35-38. DOI: 10.3969/j.issn.1000-4602.2012.08.009
[46] YANG L, HE J T, LIU Y M, et al. Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing, China[J]. Journal of Environmental Sciences (China),2016,50:93-102. DOI: 10.1016/j.jes.2016.05.023
[47] HE B N, HE J T, WANG J, et al. Abnormal pH elevation in the Chaobai River, a reclaimed water intake area[J]. Environmental Science Processes & Impacts,2017,19(2):111-122.
[48] 单欣, 李晨光, 陈琳, 等. 再生水景观回用水质劣化规律和机理研究进展[J/OL]. 海洋湖沼通报, 2024. https://link.cnki.net/urlid/37.1141.P.20240417.1747.006. [49] 孟婷婷, 董月群, 闻丞, 等. 生物多样性导向的再生水补给型城市河道水生态修复效果[J]. 环境工程技术学报,2023,13(4):1552-1561. DOI: 10.12153/j.issn.1674-991X.20221067 MENG T T, DONG Y Q, WEN C, et al. Biodiversity-oriented water ecological restoration effect in urban river with reclaimed water supply[J]. Journal of Environmental Engineering Technology,2023,13(4):1552-1561. DOI: 10.12153/j.issn.1674-991X.20221067
[50] ZHANG D, TAO Y, LIU X N, et al. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research,2016,73(6):1243-1252. DOI: 10.2166/wst.2015.592
[51] 李彬辉, 陈洪森, 彭瑞婷, 等. 污水再生补给对河流水生态安全的影响分析[J]. 广东化工,2022,49(10):145-147. DOI: 10.3969/j.issn.1007-1865.2022.10.048 LI B H, CHEN H S, PENG R T, et al. Analysis of the impact of sewage regeneration replenishment on river water ecological security[J]. Guangdong Chemical Industry,2022,49(10):145-147. DOI: 10.3969/j.issn.1007-1865.2022.10.048
[52] AN S Q, SONG Y, FU Q, et al. Reclaimed water use improved polluted water's self-purification capacity: evidenced by water quality factors and bacterial community structure[J]. Journal of Cleaner Production,2023,386:135736. DOI: 10.1016/j.jclepro.2022.135736
[53] JIANG X, XU S G, LIU Y Y, et al. River ecosystem assessment and application in ecological restorations: a mathematical approach based on evaluating its structure and function[J]. Ecological Engineering,2015,76:151-157. DOI: 10.1016/j.ecoleng.2014.04.027
[54] 刘轩, 陈荣, 雷振, 等. 再生水补水条件下底泥对藻类生长影响作用[J]. 环境工程,2018,36(7):37-41. LIU X, CHEN R, LEI Z, et al. Effect of sediment on the growth of algae under recycled water supplement conditions[J]. Environmental Engineering,2018,36(7):37-41.
[55] FU J, ZHAO C P, LUO Y P, et al. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors[J]. Journal of Hazardous Materials,2014,270:102-109. DOI: 10.1016/j.jhazmat.2014.01.044
[56] WANG J W, CHEN Y, CAI P G, et al. Impacts of municipal wastewater treatment plant discharge on microbial community structure and function of the receiving river in Northwest Tibetan Plateau[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127170.
[57] TISON-ROSEBERY J, LEBOUCHER T, ARCHAIMBAULT V, et al. Decadal biodiversity trends in rivers reveal recent community rearrangements[J]. Science of the Total Environment,2022,823:153431. DOI: 10.1016/j.scitotenv.2022.153431
[58] LV X M, ZHANG J, LIANG P, et al. Phytoplankton in an urban river replenished by reclaimed water: features, influential factors and simulation[J]. Ecological Indicators,2020,112:106090. DOI: 10.1016/j.ecolind.2020.106090
[59] LIAO A R, HAN D M, SONG X F, et al. Impacts of storm events on chlorophyll-a variations and controlling factors for algal bloom in a river receiving reclaimed water[J]. Journal of Environmental Management,2021,297:113376. DOI: 10.1016/j.jenvman.2021.113376
[60] TEKLEHAIMANOT G Z, GENTHE B, KAMIKA I, et al. Prevalence of enteropathogenic bacteria in treated effluents and receiving water bodies and their potential health risks[J]. Science of the Total Environment,2015,518/519:441-449. DOI: 10.1016/j.scitotenv.2015.03.019
[61] XIE E, ZHAO X H, LI K, et al. Microbial community structure in the river sediments from upstream of Guanting Reservoir: potential impacts of reclaimed water recharge[J]. Science of the Total Environment,2021,766:142609. DOI: 10.1016/j.scitotenv.2020.142609
[62] XIA P H, YAN D B, SUN R G, et al. Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, Southwest China[J]. Science of the Total Environment,2020,727:138398. DOI: 10.1016/j.scitotenv.2020.138398
[63] SU X M, STEINMAN A D, XUE Q J, et al. Temporal patterns of phyto- and bacterioplankton and their relationships with environmental factors in Lake Taihu, China[J]. Chemosphere,2017,184:299-308. DOI: 10.1016/j.chemosphere.2017.06.003
[64] DU W R, WANG J W, ZHAO X H, et al. Algal or bacterial community: who can be an effective indicator of the impact of reclaimed water recharge in an urban river[J]. Water Research,2023,247:120821. DOI: 10.1016/j.watres.2023.120821
[65] MENG L, ZUO R, WANG J S, et al. The spatial variations of correlation between microbial diversity and groundwater quality derived from a riverbank filtration site, Northeast China[J]. Science of the Total Environment,2020,706:135855. DOI: 10.1016/j.scitotenv.2019.135855
[66] 崔丙健, 高峰, 胡超, 等. 不同再生水灌溉方式对土壤-辣椒系统中细菌群落多样性及病原菌丰度的影响[J]. 环境科学,2019,40(11):5151-5163. CUI B J, GAO F, HU C, et al. Effect of different reclaimed water irrigation methods on bacterial community diversity and pathogen abundance in the soil-pepper ecosystem[J]. Environmental Science,2019,40(11):5151-5163.
[67] de MIGUEL A, MARTÍNEZ-HERNÁNDEZ V, LEAL M, et al. Short-term effects of reclaimed water irrigation: Jatropha curcas L. cultivation[J]. Ecological Engineering,2013,50:44-51. DOI: 10.1016/j.ecoleng.2012.06.028
[68] ADROVER M, FARRÚS E, MOYÀ G, et al. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation[J]. Journal of Environmental Management, 2012, 95 Suppl: S188-S192.
[69] 李晓娜, 武菊英, 徐彪, 等. 再生水灌溉草坪对土壤质量影响的试验研究[J]. 水土保持学报,2011,25(3):245-249. LI X N, WU J Y, XU B, et al. Influence of reclaimed water irrigation on soil quality on lawn soil[J]. Journal of Soil and Water Conservation,2011,25(3):245-249.
[70] BISWAS S K, MOJID M A. Changes in soil properties in response to irrigation of potato by urban wastewater[J]. Communications in Soil Science and Plant Analysis,2018,49(7):828-839. DOI: 10.1080/00103624.2018.1435684
[71] 王齐, 刘英杰, 周德全, 等. 短期和长期中水灌溉对绿地土壤理化性质的影响[J]. 水土保持学报,2011,25(5):74-80. WANG Q, LIU Y J, ZHOU D Q, et al. Effect on greenland soil physical and chemical properties irrigated by reclaimed water for short-term and long-term[J]. Journal of Soil and Water Conservation,2011,25(5):74-80.
[72] 邵运哲, 王正. 再生水灌溉对土壤性质的影响[J]. 水土保持应用技术,2019(6):34-36. DOI: 10.3969/j.issn.1673-5366.2019.06.12 [73] ZALACÁIN D, BIENES R, SASTRE-MERLÍN A, et al. Influence of reclaimed water irrigation in soil physical properties of urban parks: a case study in Madrid (Spain)[J]. CATENA,2019,180:333-340. DOI: 10.1016/j.catena.2019.05.012
[74] SAKELLARIOU-MAKRANTONAKI M, TENTAS I, KOLIOU A, et al. Irrigation of ornamental shrubs with treated municipal wastewater[C]// Proceedings of the 8th International Conference on Environmental Science and Technology. Lemnos Island, Greece, 2003: 704-714.
[75] 梁薇. 再生水灌溉对城市园林植物和土壤的影响研究[D]. 保定: 河北农业大学, 2008. [76] MUSA YAHAYA S, AHMAD MAHMUD A, ABDU N. The use of wastewater for irrigation: pros and cons for human health in developing countries[J]. Total Environment Research Themes,2023,6:100044. DOI: 10.1016/j.totert.2023.100044
[77] 李中阳, 樊向阳, 齐学斌, 等. 城市污水再生水灌溉对黑麦草生长及土壤磷素转化的影响[J]. 中国生态农业学报,2012,20(8):1072-1076. DOI: 10.3724/SP.J.1011.2012.01072 LI Z Y, FAN X Y, QI X B, et al. Effect of reclaimed municipal wastewater on ryegrass growth and soil phosphorus conversion[J]. Chinese Journal of Eco-Agriculture,2012,20(8):1072-1076. DOI: 10.3724/SP.J.1011.2012.01072
[78] 李竞, 马红霞, 郑恩峰. 再生水灌溉对园林植物叶片生理及根际土壤特性的影响[J]. 水土保持研究,2017,24(4):70-76. LI J, MA H X, ZHENG E F. Influence of irrigation with reclaimed water on rhizosphere soil properties and leaf physiology of different landscape plants[J]. Research of Soil and Water Conservation,2017,24(4):70-76.
[79] 周媛, 李平, 郭魏, 等. 施氮和再生水灌溉对设施土壤酶活性的影响[J]. 水土保持学报,2016,30(4):268-273. ZHOU Y, LI P, GUO W, et al. Influence of nitrogen application and reclaimed wastewater irrigation on greenhouse soil enzyme activities[J]. Journal of Soil and Water Conservation,2016,30(4):268-273.
[80] CHEN W P, LU S D, PAN N, et al. Impact of reclaimed water irrigation on soil health in urban green areas[J]. Chemosphere,2015,119:654-661. DOI: 10.1016/j.chemosphere.2014.07.035
[81] 郭魏, 齐学斌, 李中阳, 等. 不同施氮水平下再生水灌溉对土壤微环境的影响[J]. 水土保持学报,2015,29(3):311-315. GUO W, QI X B, LI Z Y, et al. Impact of reclaimed water on soil microenvironment under different nitrogen levels[J]. Journal of Soil and Water Conservation,2015,29(3):311-315.
[82] WANG J H, GONG X, GUAN J F, et al. The impact of reclaimed water irrigation on soil microbial community structure[J]. Advanced Materials Research, 2014, 955/956/957/958/959: 3635-3639.
[83] LI B H, CAO Y T, GUAN X Y, et al. Microbial assessments of soil with a 40-year history of reclaimed wastewater irrigation[J]. Science of the Total Environment, 2019, 651: 696-705.
[84] CHEN Z B, REN N Q, WANG A J, et al. A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater[J]. Water Research,2008,42(13):3385-3392. DOI: 10.1016/j.watres.2008.04.020
[85] KILLHAM K, STADDON W. Bioindicators and sensors of soil health and the application of geostatistics[M]//Enzymes in the Environment. Boca Raton: CRC Press, 2002.
[86] MKHININI M, BOUGHATTAS I, ALPHONSE V, et al. Heavy metal accumulation and changes in soil enzymes activities and bacterial functional diversity under long-term treated wastewater irrigation in East Central Region of Tunisia (Monastir Governorate)[J]. Agricultural Water Management,2020,235:106150. DOI: 10.1016/j.agwat.2020.106150
[87] 焦志华. 再生水灌溉对植物生长及土壤微生物生态系统的影响研究[D]. 北京: 中国矿业大学(北京), 2010. [88] 龚雪. 再生水回用过程中土壤化学性质及微生物的变化规律研究[D]. 哈尔滨: 哈尔滨师范大学, 2015. [89] MOULIA V, AIT-MOUHEB N, LESAGE G, et al. Short-term effect of reclaimed wastewater quality gradient on soil microbiome during irrigation[J]. Science of the Total Environment,2023,901:166028. DOI: 10.1016/j.scitotenv.2023.166028
[90] DOTANIYA M L, PIPALDE J S. Soil enzymatic activities as influenced by lead and nickel concentrations in a vertisol of central India[J]. Bulletin of Environmental Contamination and Toxicology,2018,101(3):380-385. DOI: 10.1007/s00128-018-2402-9
[91] BOUGHATTAS I, HATTAB S, ALPHONSE V, et al. Use of earthworms Eisenia andrei on the bioremediation of contaminated area in north of Tunisia and microbial soil enzymes as bioindicator of change on heavy metals speciation[J]. Journal of Soils and Sediments,2019,19(1):296-309. DOI: 10.1007/s11368-018-2038-8
[92] VITHANAGE M, BANDARA T, AL-WABEL M I, et al. Soil enzyme activities in waste biochar amended multi-metal contaminated soil;effect of different pyrolysis temperatures and application rates[J]. Communications in Soil Science and Plant Analysis,2018,49(5):635-643. DOI: 10.1080/00103624.2018.1435795
[93] IBEKWE A M, GONZALEZ-RUBIO A, SUAREZ D L. Impact of treated wastewater for irrigation on soil microbial communities[J]. Science of the Total Environment,2018,622/623:1603-1610. DOI: 10.1016/j.scitotenv.2017.10.039
[94] LU Y L, SONG S, WANG R S, et al. Impacts of soil and water pollution on food safety and health risks in China[J]. Environment International,2015,77:5-15. DOI: 10.1016/j.envint.2014.12.010
[95] 徐桂红, 田军仓, 王璐璐, 等. 再生水滴灌对番茄光合、产量及品质的影响[J]. 节水灌溉,2019(10):83-88. XU G H, TIAN J C, WANG L L, et al. Effects of reclaimed water drip irrigation on photosynthesis yield and quality of tomato[J]. Water Saving Irrigation,2019(10):83-88.
[96] LU S B, ZHANG X L, LIANG P. Influence of drip irrigation by reclaimed water on the dynamic change of the nitrogen element in soil and tomato yield and quality[J]. Journal of Cleaner Production,2016,139:561-566. DOI: 10.1016/j.jclepro.2016.08.013
[97] 董思琼, 田军仓, 沈晖, 等. 不同再生水水质和追肥量对滴灌辣椒光合和产量的影响[J]. 节水灌溉,2022(2):34-39. DONG S Q, TIAN J C, SHEN H, et al. Effects of different reclaimed water quality and fertilization levels on photosynthesis and yield of pepper under drip irrigation[J]. Water Saving Irrigation,2022(2):34-39.
[98] AYOUB S, AL-SHDIEFAT S, RAWASHDEH H, et al. Utilization of reclaimed wastewater for olive irrigation: effect on soil properties, tree growth, yield and oil content[J]. Agricultural Water Management,2016,176:163-169. DOI: 10.1016/j.agwat.2016.05.035
[99] 于辉, 萨日娜, 靳玉荣, 等. 再生水、雨水混合灌溉及抗蒸腾剂对青贮玉米产草量、营养品质的影响[J]. 中国饲料,2019(23):31-35. YU H, SA R N, JIN Y R, et al. Influence of reclaimed water and rain water mixed irrigation and antitranspirant on yield and quality of silage corn[J]. China Feed,2019(23):31-35.
[100] YANG S S, FENG W Z, WANG S Q, et al. Farmland heavy metals can migrate to deep soil at a regional scale: a case study on a wastewater-irrigated area in China[J]. Environmental Pollution,2021,281:116977. DOI: 10.1016/j.envpol.2021.116977
[101] MENG W Q, WANG Z W, HU B B, et al. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: a case study assessment[J]. Agricultural Water Management,2016,171:153-161. DOI: 10.1016/j.agwat.2016.03.013
[102] CHRISTOU A, AGÜERA A, BAYONA J M, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes: a review[J]. Water Research,2017,123:448-467. ◇ DOI: 10.1016/j.watres.2017.07.004