西瓜皮生物炭对水体中多种抗生素吸附研究

Study on the Adsorption of Multiple Antibiotics in Water by Watermelon Peel Biochar

  • 摘要: 随着抗生素在环境中的广泛存在及其带来的抗药性威胁,开发高效、环保的抗生素去除技术已成为环境治理的关键挑战。中国作为西瓜产量大国,对西瓜皮等厨余垃圾的高效处理需求迫切。因此,以西瓜皮为原料,通过热解制备生物炭(WBC)是一种极具潜力的解决方案。本研究对制备的生物炭进行了多方面表征,包括扫描电子显微镜(SEM)、比表面积和孔径分析(BET)以及傅里叶变换红外光谱(FTIR)。研究了pH值对吸附性能的影响,并在单独吸附和共吸附体系下,系统考察了WBC对多种抗生素及药物的吸附性能和机制。单独吸附体系中,研究对象包括甲氧苄啶(TMP)、环丙沙星(CIP)、依诺沙星(ENO)和磺胺甲噁唑(SMX);共吸附体系中,进一步引入氯氮平(CLZ)和卡马西平(CBZ)以探讨竞争吸附行为。研究结果表明,pH值对生物炭吸附抗生素的性能具有显著影响。在单独吸附体系中,WBC对ENO的吸附量最高,达64.73 mg·g⁻¹。在共吸附体系中,WBC对不同药物的吸附能力表现出明显差异,吸附容量普遍较单独吸附体系降低。这一现象主要归因于抗生素和药物分子体积的差异,影响了分子的扩散能力。CLZ在共吸附体系中表现出竞争吸附优势,吸附模式结合了单层和多层吸附;而TMP的吸附模式则与单独吸附体系有所不同。批吸附实验和傅里叶变换红外光谱分析进一步揭示了WBC吸附抗生素的主要机制。研究表明,氢键相互作用是主要驱动力,同时受到静电相互作用、疏水作用、氢键以及π-π相互作用的综合影响。本研究聚焦于西瓜皮生物炭在水体中抗生素及药物单独和共存条件下的去除能力及其吸附机制的系统分析,为生物炭材料在环境治理中的应用提供了理论基础与实践依据。

     

    Abstract: The widespread presence of antibiotics in the environment poses a significant threat due to the development of antibiotic resistance, making the development of efficient and eco-friendly removal technologies a critical step in environmental management. As a major watermelon producer, China faces an urgent need for the effective treatment of watermelon rind, a type of kitchen waste. Utilizing watermelon rind as a raw material to produce biochar (WBC) through pyrolysis presents a promising solution.This study characterized the prepared biochar using scanning electron microscopy (SEM), Brunauer–Emmett–Teller surface area and pore size analysis (BET), and Fourier-transform infrared spectroscopy (FTIR). The influence of pH on adsorption performance was investigated, and adsorption behaviors were analyzed under both single-solute and multi-solute systems. The single-solute system examined the adsorption of trimethoprim (TMP), ciprofloxacin (CIP), enrofloxacin (ENO), and sulfamethoxazole (SMX), while the multi-solute system included additional pharmaceutical compounds, clozapine (CLZ), and carbamazepine (CBZ), to study competitive adsorption behaviors.Results indicated that pH significantly affected the adsorption efficiency of WBC. In the single-solute system, WBC showed the highest adsorption capacity for ENO, reaching 64.73 mg·g⁻¹. In the multi-solute system, WBC demonstrated varying adsorption capacities for different compounds, with most adsorption capacities decreasing compared to the single-solute system. This reduction was primarily attributed to the differences in molecular size, which influenced molecular diffusion. CLZ exhibited a competitive adsorption advantage in the multi-solute system, displaying a mixed mode of monolayer and multilayer adsorption, while the adsorption mode of TMP shifted compared to the single-solute system.Batch adsorption experiments and FTIR analysis revealed that hydrogen bonding was the dominant mechanism driving the adsorption of antibiotics onto WBC. The adsorption process was also influenced by electrostatic interactions, hydrophobic effects, hydrogen bonding, and π–π interactions.This study provides a comprehensive analysis of the removal efficiency and adsorption mechanisms of WBC for antibiotics and pharmaceuticals in water under both single-solute and multi-solute conditions, offering theoretical and practical insights for the application of biochar materials in environmental remediation.

     

/

返回文章
返回