铁碳基强化生物滞留设施脱氮除磷性能与机理研究

Study on the performance and mechanism of nitrogen and phosphorus removal in iron-carbon based enhanced bioretention facility

  • 摘要: 针对传统生物滞留设施对氮磷污染物去除效率低且不稳定的问题,本研究构建铁碳基生物滞留设施(IC-B),通过模拟不同降雨强度(7、17、21 mm/h)、雨前干旱期(1、3、10天)及淹没区高度(0、400 mm)等条件,探究其对雨水径流中氮磷的协同去除机制。试验装置由亚克力圆柱体构成,填料层采用铁碳材料(质量比1:1),并设置生物炭组(BC-B)和传统砂石组(TR-B)作为对照。水质分析通过紫外分光光度法测定硝态氮、氨氮、总氮及总磷,同时结合高通量测序和基质潜在硝化/反硝化能力评估微生物群落及反应机理。结果表明:IC-B组对硝态氮和总磷的平均去除率分别为94.17%和97.57%,较TR-B组提升46.2%和33.4%。铁碳填料通过多路径耦合作用强化污染物去除:生物炭在包气带形成吸附屏障,铁屑加速溶解氧消耗,协同营造缺氧环境促进反硝化菌(Proteobacteria相对丰度38.57%)富集;铁还原菌(Acidobacteriota)增殖驱动Fe3+/Fe2+循环,耦合微生物代谢增强系统稳定性,同步促进化学除磷与生物脱氮。淹没区高度(400 mm)显著提升反硝化效率,而干旱期延长(10天)未导致磷二次释放。研究揭示了铁碳材料改性生物滞留设施的污染物协同去除机制,为城市面源污染控制提供技术支撑。

     

    Abstract: To address the low and unstable nitrogen-phosphorus removal efficiency of conventional bioretention systems, this study develops an iron-carbon modified bioretention facility (IC-B) and investigates its synergistic nutrient removal mechanisms under simulated rainfall intensities (7, 17, 21 mm/h), pre-rain drought periods (1, 3, 10 days), and inundation zone heights (0, 400 mm). The experimental setup comprises acrylic columns filled with iron-carbon media (1:1 mass ratio), alongside biochar (BC-B) and traditional sand (TR-B) control groups. Water quality parameters (nitrate, ammonium, total nitrogen, and total phosphorus) are analyzed via UV spectrophotometry, while microbial communities and reaction pathways are evaluated through high-throughput sequencing and substrate nitrification/denitrification potential tests. Results demonstrate that IC-B achieves average nitrate nitrogen and total phosphorus removal rates of 94.17% and 97.57%, representing 46.2% and 33.4% improvements over TR-B, respectively. The iron-carbon media enable multi-path coupling: biochar establishes adsorption barriers in the vadose zone, while iron fillings accelerate oxygen depletion, synergistically creating anoxic microenvironments that enrich denitrifying bacteria (Proteobacteria abundance: 38.57%). Fe3+/Fe2+ redox cycling mediated by Acidobacteriota enhances system stability, simultaneously promoting chemical phosphorus precipitation and biological denitrification. A 400-mm inundation zone height significantly improves denitrification efficiency, whereas extended drought periods (10 days) do not trigger phosphorus leaching. This study elucidates the synergistic mechanisms of iron-carbon modified bioretention systems, offering technical insights for urban non-point source pollution mitigation.

     

/

返回文章
返回