水解酸化废水作为反硝化碳源的过程特征及其动力学分析

Kinetics and Process Characteristics of Hydrolysis-acidogenosis Wastewater as Denitrification Carbon Source

  • 摘要: 将淀粉废水预处理过程中的水解酸化调节池出水引入到缺氧池中作为反硝化碳源,在解决脱氮过程中碳源不足的同时实现污水的资源化利用。通过正交试验确定了最优操作条件:温度为40 ℃,pH为7,C/N为7。测定了最优条件下水解酸化废水作为碳源的反硝化速率为4.66~14.22 mg/(g•h)(以NO3- -N计)。利用三维荧光光谱结合平行因子分析法研究了水解酸化废水作为碳源的反硝化过程:系统中可识别出3个荧光组分,包括类色氨酸荧光组分1(225、275 nm/350 nm)和3(220、275 nm/335 nm)、类络氨酸荧光组分2(230、275 nm/305 nm)。组分1和2的荧光强度随时间先升高后降低,直至最后荧光峰消失;组分3的荧光强度与组分1荧光强度显著负相关;总荧光强度随时间呈现先升高后降低的趋势。

     

    Abstract: In the treatment of starch wastewater, the hydrolysis-acidogenosis wastewater can be used as a potential carbon source in the process of denitrification. Not only the problem of carbon source shortage in denitrification process can be solved, but also the resource utilization of wastewater can be achieved. The optimal conditions were determined through orthogonal experiments as follows: the temperature was 40 ℃, pH was 7, C/N ratio was 7. The denitrification rates of the carbon sources were 4.66~14.22 mg/(g•h) (calculated by NO3--N) under the optimal conditions. The methods of fluorescence excitation-emission matrix (EEM) spectroscopy combined with PARAFAC were utilized to analyze the denitrification process. Three kinds of fluorescence components could be identified in the system. Component 1 (225, 275nm/350nm) and component 3 (220, 275 nm/335 nm) were tryptophan-like substance. Component 2 (230, 275nm/305nm) was tyrosine-like substance. The fluorescence intensity of component 1 and component 2 increased at first and then decreased, and both of their fluorescence peaks disappeared finally. The fluorescence intensity of component 3 was negatively correlated with that of component 1. A trend of total fluorescence intensity first increasing and then decreasing was showed with the time.

     

/

返回文章
返回