基于PLS1的天津市PM2.5与空气污染物相关性分析

Correlation analysis based on PLS1 between PM2.5 and air pollutants in Tianjin

  • 摘要: 运用相关性分析、单因变量偏最小二乘回归法(PLS1)和通径分析法,研究天津市2014年不同季节(共291 d)SO2、NO2、CO、O3(8 h)和O3(1 h)4类主要空气污染物对PM2.5浓度的直接影响以及间接影响和总作用影响。结果表明:春季与PM2.5浓度呈显著性相关的污染因子为SO2、NO2和CO;夏季为O3(8 h)和CO;秋季为SO2、NO2和CO;冬季为SO2、NO2、CO和O3(8 h)。冬季的O3(1 h)与O3(8 h)间存在严重的复相关性。剔除未通过T检验和F检验的污染因子后建立的春、夏、秋、冬四季PLS1模型的拟合优度(R 2)分别为0.553、0.323、0.713和0.839,模型拟合良好。通径分析结果显示:各季节中,CO对PM2.5浓度的影响最大,且存在明显的季节变化,春、夏、秋、冬四季的总作用系数分别为10.810、5.587、6.271和12.500;O3(8 h)在夏季对PM2.5的总作用系数为0.897;NO2在春、秋、冬季对PM2.5的总作用系数分别为0.185、0.338和0.290;各污染因子对PM2.5的直接作用系数均大于其间接作用系数。

     

    Abstract: The correlation analysis, PLS1 and path analysis were applied to study the direct effect five main air pollutants on the quality of PM2.5, their indirect effect on other pollutants and also the total effect in Tianjin in different seasons (291 days) of 2014.The results showed that the factors significantly related to PM2.5 were SO2, NO2 and CO in spring, O3(8 h) and CO in summer, SO2, NO2 and CO in autumn and SO2, NO2, CO, O3(8 h) in winter, respectively. Meanwhile there was a positive multicollinearity between O3(1 h) and O3(8 h) in winter. The goodness of fit R 2of PLS1 model in four seasons was 0.553, 0.323, 0.713, 0.839, respectively, which indicated that the model was reasonable. Path analysis revealed that CO was the greatest pollutant factor to PM2.5 and showed there existed obvious seasonal variations, with the total effect coefficients of 10.810, 5.587, 6.271, 12.500 in four seasons, respectively. The total effect coefficient of O3(8 h) in summer was 0.897, and that of NO2 was 0.185, 0.338 and 0.290 in spring, autumn and winter, respectively. Moreover, the direct effect coefficients of the pollutants in four seasons were higher than those of indirect effect.

     

/

返回文章
返回