芦苇碳源投加量对表面流人工湿地中试系统强化脱氮启动的影响

Influence of Phragmites australis carbon dosage on enhanced nitrogen removal start-up of pilot-scale surface flow constructed wetland

  • 摘要: 针对农田退水C/N较低的问题,采取表面流人工湿地投加缓释型植物碳源芦苇强化反硝化脱氮。模拟农田退水水质为:N O 3 - -N浓度,(8.00±1.00)mg/L;TN浓度,(9.00±1.00)mg/L;N H 4 + -N浓度,(0.70±0.10)mg/L;N O 2 - -N浓度,0.01 mg/L;TP浓度,(1.00±0.05)mg/L。设计了3组中试湿地:空白组湿地为不加芦苇碎段的对照湿地;1 #湿地为芦苇碎段面积占强化反硝化湿地段面积的1/4;2 #湿地为芦苇碎段面积占强化反硝化湿地段面积的1/2。采用静态方式进行为期40 d的启动试验。结果表明:启动前期(第1~18天),空白组湿地、1 #湿地和2 #湿地N O 3 - -N的去除率分别达到84.2%(第18天)、89.1%(第18天)和97.8%(第7天);TN的去除率分别达到75.1%(第15天)、79.4%(第15天)和90.0%(第7天)。考虑到湿地N O 3 - -N的利用情况,在试验第18天时补加N O 3 - -N至浓度为(8.00±1.00)mg/L。启动后期(第19~40天),空白组湿地N O 3 - -N和TN的去除率在第40天分别为78.0%和71.4%;1 #湿地在第37天分别为92.2%和75.2%;2 #湿地在第35天分别为95.8%和77.1%。投加芦苇碳源可大大缩短中试表面流人工湿地的启动期,2 #湿地启动较快,且对N O 3 - -N和TN的去除效果明显高于1 #湿地和空白组湿地,表明碳源投加越多,启动越快,脱氮效果越好。

     

    Abstract: Slow-released plant carbon, Phragmites australis pieces, was added to the surface flow constructed wetland (SFW) to enhance the denitrification nitrogen removal of the low C/N ratio agricultural runoff. The characteristics of the simulated agricultural runoff were as follows: (8.00±1.00)mg/L N O 3 - -N, (9.00±1.00)mg/L TN, (0.70±0.10)mg/L N H 4 + -N, 0.01mg/L N O 2 - -N and (1.00±0.05)mg/L TP. Three pilot-scale SFWs were designed for experiment as follows: the blank SFW without Phragmites australis pieces dosage, 1 # SFW with 1/4 areal proportion of Phragmites australis pieces to enhanced denitrification wetland and 2 # SFW with 1/2 areal proportion of Phragmites australis pieces to enhanced denitrification wetland. A 40-day start-up operation was carried out in static mode. The results showed that the N O 3 - -N removal efficiency increased gradually to 84.2%, 89.1% and 97.8% on the 18 th, 18 th and 7 th day for the blank, 1 # and 2 # SFW respectively, while their TN removal efficiency gradually increased to 75.1%, 79.4% and 90.0% on the 15 th, 15 th and 7 th day in the early stage (1-18 d). The N O 3 - -N was added to (8.00 ± 1.00) mg/L when it was almost completely consumed on the 18 th day. In the latter stage (19-40 d), the N O 3 - -N removal gradually increased to 78.0%, 92.2% and 95.8% on the 40 th, 37 th and 35 th day for the blank, 1 # and 2 # SFW respectively, while their TN removal efficiency increased gradually to 71.4%, 75.2% and 77.1% accordingly. The start-up period of SFW could be greatly shortened by adding Phragmites australis pieces as carbon source, and 2 # SFW started with the higher speed. Moreover, the N O 3 - -N and TN removal rates of 2 # SFW were also higher than those of 1 # and the blank SFWs. It was indicated that the higher-speed start-up and better nitrogen removal efficiency could be obtained for SFW with more Phragmites australis pieces carbon dosage.

     

/

返回文章
返回