新型破碎压榨联合生物工艺处理餐厨垃圾中试研究

Pilot-scale study on food waste by combined processes of new-type breaking and squeezing pretreatment and consolidated bio-processing (CBP)

  • 摘要: 采用新型破碎压榨预处理、油液渣三相分离的联合生物工艺(CBP)处理广州市餐厨垃圾,研究该工艺对餐厨垃圾减量率、产乙醇量、回收油脂和高蛋白酒糟的效能。结果表明:1)新型破碎压榨预处理后,餐厨垃圾减量率达90%以上,且压榨渣的干基低位燃烧值为4 885 kJ/kg,达到GB/T 18750—2008《生活垃圾焚烧炉及余热锅炉》的垃圾焚烧标准。2)在偏酸性(pH为3.62)和含盐量较高(盐分浓度为8.03 g/L)的环境下,酵母代谢工程菌(噬污酵母)在24 h内对餐厨垃圾总糖转化为乙醇的效率高达91.78%,说明酵母代谢工程菌具有耐盐耐酸性及糖醇转化的高效性。3)联合生物加工工艺对餐厨垃圾的油脂回收率为89.78%,对高蛋白酒糟的回收率为98.39%,且产品特性达到GB/T 25866—2010《玉米干全酒糟(玉米DDGS)》高脂型一级标准;对乙醇回收率为94.99%,且产品特性达到GB/T 394.1—2008《工业酒精》一级标准。联合生物加工工艺对餐厨垃圾处理具有减量化程度高、发酵周期短、产品回收率高且品质好的优势。

     

    Abstract: The new-type breaking and squeezing equipment and combined oil-liquid-sludge separation technology with consolidated bio-processing (CBP) were used to study the effect on the reduction rate of food waste, the ethanol production, and the recovery of waste oil and high-protein vinasse. The results showed that: 1) the reduction rate of food waste reached above 90% and the low combustion value of dry slag attained 4 885 kJ/kg, reaching the national incineration standard. 2) In the salinity and acidic conditions, the sugar-alcohol conversion rate by yeast metabolic engineering bacteria was as high as 91.78% within 24 hours, which explained the bacteria had salt-tolerant and acid-resistance, and the high conversion efficiency from sugar to alcohol. 3) The recovery rate of waste oil and high-protein vinasse was 89.78% and 98.39%, respectively, and the product feature reached the high lipid standard of distillers dried grains with solubles (DDGS). The recovery rate of alcohol was 94.99%, and the product features reached the Class Ⅰ of national industrial alcohol standard. The consolidated bio-processing(CBP) had the advantage of high reduction rate, short fermentation period, and high recovery rate.

     

/

返回文章
返回