湿烟羽消散技术对污染物扩散特性的影响

Effects of wet plume elimination technology on pollutants diffusion

  • 摘要: 湿法脱硫出口的饱和湿烟气直接由烟囱排入环境会形成湿烟羽,产生视觉污染。分析了湿烟羽的形成和消散过程,重点考察直接加热、降温再热和直接降温等湿烟羽消散技术对颗粒物、SO2和NO2扩散特性的影响。结果表明:湿烟羽消散技术对环境颗粒物浓度影响很小,颗粒物最大落地浓度占标率小于1.5%,颗粒物最大落地浓度远低于GB 3095—2012《环境空气质量标准》的浓度限值;降温再热和直接加热可以促进SO2和NO2在环境中的扩散,2种技术分别使SO2和NO2最大落地浓度占标率降低了31.5%和15.1%;采用直接降温技术消散湿烟羽后,SO2和NO2最大落地浓度占标率分别小于20%和70%,SO2和NO2最大落地浓度仍低于GB 3095—2012的浓度限值。

     

    Abstract: Wet plume forms when the wet flue gas from the wet desulphurization system exits into the ambient air, which would bring about visual pollution. The formation and dispersion process of wet plume was analyzed. The effects of wet plume elimination technologies, such as direct heating, cooling and reheating, direct cooling, on the diffusion characteristics of particulate, SO2 and NO2 were investigated. The results showed that the wet plume elimination technologies have little effect on ambient particulate concentration; the ratio of maximum ground-level particulate concentration to ambient particulate standard is less than 1.5%, which indicates that the maximum ground-level particulate concentration is much lower than that of Ambient Air Quality Standard(GB 3095-2012). The direct heating as well as cooling and reheating of flue gas can promote the diffusion of SO2 and NO2, and the ratios of maximum ground-level concentration of SO2 and NO2 to ambient standard values can be reduced by 31.5% and 15.1%, respectively by the two technologies. By direct cooling of flue gas, the ratios of maximum ground-level concentration of SO2 and NO2 to ambient standard values are less than 20% and 70%, respectively, which shows that the maximum ground-level concentrations of SO2 and NO2 are below the air quality standards.

     

/

返回文章
返回