留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于构造函数法的微藻比生长率因子建模及碳减排潜力研究

刘建建 赵兵涛 苏亚欣

刘建建, 赵兵涛, 苏亚欣. 基于构造函数法的微藻比生长率因子建模及碳减排潜力研究[J]. 环境工程技术学报, 2019, 9(2): 175-180. doi: 10.12153/j.issn.1674-991X.2018.11.260
引用本文: 刘建建, 赵兵涛, 苏亚欣. 基于构造函数法的微藻比生长率因子建模及碳减排潜力研究[J]. 环境工程技术学报, 2019, 9(2): 175-180. doi: 10.12153/j.issn.1674-991X.2018.11.260
LIU Jianjian, ZHAO Bingtao, SU Yaxin. Modeling of specific growth rate factors of microalgae based on constructional function method and its carbon emission reduction potential[J]. Journal of Environmental Engineering Technology, 2019, 9(2): 175-180. doi: 10.12153/j.issn.1674-991X.2018.11.260
Citation: LIU Jianjian, ZHAO Bingtao, SU Yaxin. Modeling of specific growth rate factors of microalgae based on constructional function method and its carbon emission reduction potential[J]. Journal of Environmental Engineering Technology, 2019, 9(2): 175-180. doi: 10.12153/j.issn.1674-991X.2018.11.260

基于构造函数法的微藻比生长率因子建模及碳减排潜力研究

doi: 10.12153/j.issn.1674-991X.2018.11.260
详细信息
    作者简介:

    刘建建(1996—),男,硕士研究生,研究方向为大气污染控制,liu.jianjian@foxmail.com;

  • 中图分类号: X173

Modeling of specific growth rate factors of microalgae based on constructional function method and its carbon emission reduction potential

  • 摘要: 选取微藻比生长率(μ)的关键影响因子CO2浓度、光照强度和氮浓度(简称三因子),利用10种一元非线性模型,通过构造函数法构建并优化三因子与微藻μ之间的多元非线性回归模型;在满足显著性水平P<0.05、共线性诊断VIF<5的相关参数检验后,得出多元非线性回归方程的可决系数(R2)为0.917,说明该方程可用于微藻μ的有效预测。利用该方程定量预测三因子的变化对微藻μ的影响,结果表明:CO2浓度为5%~15%时,微藻μ较高;随光照强度〔45~480 μmol/(m2·s)〕和氮浓度(0~700 mg/L)的增加,微藻μ逐渐增大。根据回归模型预测微藻产量为7.2~100.2 kg/(m3·a),由此估算微藻固定CO2量为7.92~183.70 kg/(m3·a)。

     

  • [1] CHISTI Y.Biodiesel from microalgae[J].Biotechnology Advances,2007,25(3):294-306.
    doi: 10.1016/j.biotechadv.2007.02.001
    [2] 李健,王广策.微藻生物技术在二氧化碳减排和生物柴油生产中的应用研究进展[J].海洋科学,2011,35(7):122-129.

    LI J,WANG G C.Microalgae research advances towards CO2 reduction and biodiesel production[J].Marine Sciences,2011,35(7):122-129.
    [3] POZZOBON V,PERRE P.Han’s model parameters for microalgae grown under intermittent illumination:determined using particle swarm optimization[J].Journal of Theoretical Biology,2018,437:29.
    doi: 10.1016/j.jtbi.2017.10.010 pmid: 29050962
    [4] WANG L L,ZHAO B T,ZHANG Y X.Prediction of energy microalgae production under flue gas using response surface methodology[J].Energy Procedia,2012,16(16):1066-1071.
    doi: 10.1016/j.egypro.2012.01.170
    [5] BILANOVIC D,ANDARGATCHEW A,KROEGER T,et al.Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations:response surface methodology analysis[J].Energy Conversion & Management,2009,50(2):262-267.
    doi: 10.1016/j.enconman.2008.09.024
    [6] MASAAKI N,NORIO S,KAZOHISA M,et al.Growth of microalgae in high CO2 gas and effects of SOx and NOx[J].Applied Biochemistry & Biotechnology,1991,28/29(1):877-886.
    doi: 10.1007/BF02922657 pmid: 1929389
    [7] SIERRA E,ACIÉN F G,FERNÁNDEZ J M,et al.,Characterization of a flat plate photobioreactor for the production of microalgae[J].Chemical Engineering Journal,2008,138(1):136-147.
    doi: 10.1016/j.cej.2007.06.004
    [8] CHIU S Y,KAO C Y,CHEN C H,et al.Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor[J].Bioresource Technology,2008,99(9):3389-3396.
    doi: 10.1016/j.biortech.2007.08.013 pmid: 17904359
    [9] MORAIS M G D,COSTA J A V.Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide[J].Energy Conversion & Management,2007,48(7):2169-2173.
    doi: 10.1016/j.enconman.2006.12.011
    [10] SUNG K D,LEE J S,SHIN C S,et al.CO2 fixation by Chlorella sp. KR1 and its cultural characteristics[J].Bioresource Technology,1999,68(3):269-273.
    doi: 10.1016/S0960-8524(98)00152-7
    [11] YUE L H,CHEN W G.Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae[J].Energy Conversion & Management,2005,46(11/12):1868-1876.
    doi: 10.1016/j.enconman.2004.10.010
    [12] MORAIS M G D,COSTA J A V.Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus, cultivated in a three-stage serial tubular photobioreactor[J].Journal of Biotechnology,2007,129(3):439-445.
    [13] YOSHIHARA K I,NAGASE H,EGUCHI K,et al.Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor[J].Journal of Fermentation & Bioengineering,1996,82(4):351-354.
    doi: 10.1016/0922-338X(96)89149-5
    [14] YUN Y S,PARK J M,YANG J W.Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration[J].Biotechnology Techniques,1996,10(9):713-716.
    [15] CHIU S Y,KAO C Y,HUANG T T,et al.Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures[J].Bioresource Technology,2011,102(19):9135.
    doi: 10.1016/j.biortech.2011.06.091 pmid: 21802285
    [16] ZHAO B T,SU Y X.Process effect of microalgal-carbon dioxide fixation and biomass production:a review[J].Renewable & Sustainable Energy Reviews,2014,31(2):121-132.
    doi: 10.1016/j.rser.2013.11.054
    [17] CHAE S R,HWANG E J,SHIN H S.Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor[J].Bioresource Technology,2006,97(2):322-329.
    doi: 10.1016/j.biortech.2005.02.037 pmid: 16171688
    [18] MAEDA K,OWADA M,KIMURA N,et al.CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae[J].Energy Conversion & Management,1995,36(6/7/8/9):717-720.
    doi: 10.1016/0140-6701(96)89054-0
    [19] GOLDMAN J C,MANN R.Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures[J].Journal of Experimental Marine Biology & Ecology,1980,46(1):29-39.
    doi: 10.1016/0022-0981(80)90088-X
    [20] 李奥搏,汪苹,张正洁,等.异养小球藻的筛选鉴定及其特性研究[J].环境工程技术学报,2011,1(2):131-136.

    LI A B,WANG P,ZHANG Z J,et al.Study on isolation and identification of a strain heterotrophic Chlorella and its growth characteristics[J].Journal of Environmental Engineering Technology,2011,1(2):131-136.
    [21] 任耀宗,刘国,余红,等.草原地区河流型天然湿地对河流水体污染物去除特性[J].环境工程技术学报,2019,9(2):181-187.
    [22] REN Y Z, LIU G, YU H,et al.Removal characteristics of pollutants by riverine natural wetland in prairie region[J].Journal of Environmental Engineering Technology,2019,9(2):181-187.
  • 加载中
计量
  • 文章访问数:  356
  • HTML全文浏览量:  58
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-22
  • 刊出日期:  2019-03-20

目录

    /

    返回文章
    返回