留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维荧光光谱表征Fe(Ⅱ)浓度对厌氧氨氧化过程的影响与平行因子分析

王嵘 姚亮 申慧彦 余丽 李卫华

王嵘, 姚亮, 申慧彦, 余丽, 李卫华. 三维荧光光谱表征Fe(Ⅱ)浓度对厌氧氨氧化过程的影响与平行因子分析[J]. 环境工程技术学报, 2019, 9(6): 658-665. doi: 10.12153/j.issn.1674-991X.2019.09.120
引用本文: 王嵘, 姚亮, 申慧彦, 余丽, 李卫华. 三维荧光光谱表征Fe(Ⅱ)浓度对厌氧氨氧化过程的影响与平行因子分析[J]. 环境工程技术学报, 2019, 9(6): 658-665. doi: 10.12153/j.issn.1674-991X.2019.09.120
WANG Rong, YAO Liang, SHEN Huiyan, YU Li, LI Weihua. Characterizing the effect of Fe(Ⅱ) dosage on anammox treatment process using excitation-emission matrix fluorescence spectroscopy and parallel factor analysis[J]. Journal of Environmental Engineering Technology, 2019, 9(6): 658-665. doi: 10.12153/j.issn.1674-991X.2019.09.120
Citation: WANG Rong, YAO Liang, SHEN Huiyan, YU Li, LI Weihua. Characterizing the effect of Fe(Ⅱ) dosage on anammox treatment process using excitation-emission matrix fluorescence spectroscopy and parallel factor analysis[J]. Journal of Environmental Engineering Technology, 2019, 9(6): 658-665. doi: 10.12153/j.issn.1674-991X.2019.09.120

三维荧光光谱表征Fe(Ⅱ)浓度对厌氧氨氧化过程的影响与平行因子分析

doi: 10.12153/j.issn.1674-991X.2019.09.120
详细信息
    作者简介:

    王嵘(1989—),女,硕士,主要研究方向为废水生物处理, ronger@ahjzu.edu.cn

    通讯作者:

    李卫华 E-mail: liweihua9@126.com

  • 中图分类号: X703

Characterizing the effect of Fe(Ⅱ) dosage on anammox treatment process using excitation-emission matrix fluorescence spectroscopy and parallel factor analysis

More Information
    Corresponding author: Weihua LI E-mail: liweihua9@126.com
  • 摘要: 考察Fe(Ⅱ)浓度对厌氧氨氧化过程的影响,并采用三维荧光光谱结合平行因子分析方法,解析厌氧氨氧化反应器出水中的荧光组分,探究外加Fe(Ⅱ)与反应器出水水质的关系。结果表明:随着Fe(Ⅱ)浓度从1.84 mg/L升至5.00 mg/L,N H 4 + -N和N O 2 - -N的去除率逐渐增加,表明增加进水Fe(Ⅱ)浓度可以提高微生物对底物的利用率;随着Fe(Ⅱ)浓度的增加,厌氧氨氧化菌的数量亦显著增加;厌氧氨氧化反应器出水的主要荧光组分是类蛋白质和类富里酸物质,随着Fe(Ⅱ)浓度的增加,反应器出水的类蛋白质荧光强度显著增强,表明在一定条件下,投加Fe(Ⅱ)可以促进厌氧氨氧化菌的生长。因此,利用三维荧光光谱法可以反映投加Fe(Ⅱ)对厌氧氨氧化性能的影响,进而反映反应器实际运行状况。

     

  • [1] MULDER A, van de GRAAF A A, ROBERTSON L A , et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995,16(3):177-184.
    [2] van de GRAAF A A, MULDER A, de BRUIJN P , et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied Microbiology and Biotechnology, 1995,61(4):1246-1251.
    [3] STROUS M, HEIJNEN J J, KUENEN J G , et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998,50(5):589-596.
    [4] BI Z, QIAO S, ZHOU J T , et al. Fast start-up of anammox process with appropriate ferrous iron concentration[J]. Bioresource Technology, 2014,170:506-512.
    [5] JETTEN M S M, WAGNER M, FUERST J , et al. Microbiology and application of the anaerobic ammoniumoxidation(‘anammox’)process[J]. Current Opinion in Biotechnololy, 2001,12(3):283-288.
    [6] van de STAR W R L, ABMA W R, BLOMMERS D , et al. Startup of reactors for anoxic ammonium oxidation:experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007,41(18):4149-4163.
    [7] HU B L, ZHENG P, TANG C J , et al. Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J]. Water Research, 2010,44(17):5014-5020.
    [8] TANG C J, ZHENG P, WANG C H , et al. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate anammox UASB reactor[J]. Bioresource Technology, 2010,101(6):1762-1768.
    [9] GILBERT E M, AGRAWAL S, KARST S M , et al. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater[J]. Environmental Science & Technology, 2014,48(15):8784-8792.
    [10] LOTTI T, KLEEREBEZEM R, van LOOSDRECHT M C M. Effect of temperature change on anammox activity[J]. Biotechnology and Bioengineering, 2015,112(1):98-103.
    [11] LIU S T, YANG F L, XUE Y , et al. Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor[J]. Bioresource Technology, 2008,99(17):8273-8279.
    [12] LOTTI T, KLEEREBEZEM R, van TAALMAN K C.et al. Anammox growth on pretreated municipal wastewater[J]. Environmental Science & Technology, 2014,48(14):7874-7880.
    [13] van de GRAAF A A, de BRUIJN P, ROBERTSON L A , et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996,142:2187-2196.
    [14] QIAO S, BI Z, ZHOU J , et al. Long term effects of divalent ferrous ion on the activity of anammox biomass[J]. Bioresource Technology, 2013,142:490-497.
    [15] STROUS M, PELLETIER E, MANGENOT S , et al. Deciphering the evolution and metabolismof an anammox bacterium from a community genome[J]. Nature, 2006,440:790-794.
    [16] ZHAO R, ZHANG H M, LI Y F , et al. Research of iron reduction and the iron reductase localization of anammox bacteria[J]. Current Microbiology, 2014,69(6):880-887.
    [17] ZHANG J X, ZHANG Y B, LI Y. , et al. Enhancement of nitrogen removal in a novel anammox reactor packed with Fe electrode[J]. Bioresource Technology, 2012,114:102-108.
    [18] KARTAL B, van NIFTRIK L, KELTJENS J T , et al. Anammox-growth physiology,cell biology,and metabolism[J]. Advances in Microbial Physiology, 2012,60:211-262.
    [19] van NIFTRIK L, GEERTS W J C, van DONSELAAR E G , et al. Combined structural and chemical analysis of the anammoxosome:a membrane-bounded intracytoplasmic compartment in anammox bacteria[J]. Journal of Structural Biology, 2008,161:401-410.
    [20] COBLE P G . Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996,51:325-346.
    [21] SHENG G P, YU H Q . Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2006,40:1233-1239.
    [22] LI W H, SHENG G P, LIU X W , et al. Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batchreactor[J]. Water Research, 2008,42:3173-3181.
    [23] 刘怡心, 李卫华, 申慧彦 , 等. 厌氧氨氧化反应过程的三维荧光光谱解析[J]. 环境工程学报, 2015,9(10):4680-4686.

    LIU Y X, LI W H, SHEN H Y , et al. Analysis of EEM fluorescence spectra of effluents from anammox reactor[J]. Chinese Journal of Environmental Engineering, 2015,9(10):4680-4686.
    [24] STEDMON C A, BRO R . Characterizing dissolved organic matter fluorescence with parallel factor analysis:a tutorial[J]. Limnology and Oceanography:Method, 2008,6:572-579.
    [25] ISHII S K L, BOYER T H . Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems:a critical review[J]. Environmental Science & Technology, 2012,46:2006-2017.
    [26] NI B J, FANG F, RITTMANN B E , et al. Modeling microbial products in activated sludge under feast-famine conditions[J]. Environmental Science & Technology, 2009,43:2489-2497.
    [27] RUSCALLEDA M, SEREDYNSKA-SOBECKA B, NI B J , et al. Spectrometric characterization of the effluent dissolved organic matter from an anammox reactor shows correlation between the EEM signature and anammox growth[J]. Chemosphere, 2014,117:271-277.
    [28] 魏复盛 . 水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社, 2002.
    [29] SAWAYAMA S . Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006,101(1):70-72.
    [30] WEBER K A, URRUTIA M M, CHURCHILL P F , et al. Anaerobic redox cycling of iron by freshwater sediment microorganisms[J]. Environmental Microbiology, 2006,8(1):100-113.
    [31] KARTAL B, KUYPERS M M M, LAVIK G,et al. Anammox bacteria disguised as denitrifiers:nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology, 2007,9(3):635-642.
    [32] JARUSUTTHIRAK C, AMY G . Understanding soluble microbial products(SMP) as a component of effluent organic matter(EfOM)[J]. Water Research, 2007,41:2787-2793.
    [33] LASPIDOU C S, RITTMANN B E . A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass[J]. Water Research, 2002,36:2711-2720.
    [34] ZHOU Z B, MENG F G, LIANG S , et al. Role of microorganism growth phase in the accumulation and characteristics of biomacromolecules(BMM)in a membrane bioreactor[J]. RSC Advances, 2012,2:453-460.
    [35] CHEN W, WESTERHOFF P, LEENHEER J A , et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003,37:5701-5710.
    [36] WANG Z P, ZHANG T . Characterization of soluble microbial products(SMP)under stressful conditions[J]. Water Research, 2010,44:5499-5509.
    [37] ARUNACHALAM R, SHAH H K, JU L K . Monitoring aerobic sludge digestion by online scanning fluorometry[J]. Water Research, 2005,39:1205-1214.
    [38] NI B J, ZENG R J, FANG F , et al. A novel approach to evaluate the production kinetics of extracellular polymeric substances(EPS) by activated sludge using weighted nonlinear least-squares analysis[J]. Environmental Science & Technology, 2009,43:3743-3750.
  • 加载中
计量
  • 文章访问数:  384
  • HTML全文浏览量:  155
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回