System simulation and policy optimization of carbon emission reduction in Shandong Province
-
摘要: 为考察减排政策对能源消耗及碳排放的影响,以经济、能源、人口和环境要素构建山东省能源消耗碳排放系统仿真模型。在验证模型有效性的基础上,进行单维度情景与多维度综合情景仿真模拟。结果显示:在设定情景参数下,产业结构、科技投入与能源结构调整能够有效促进碳减排,但减排效果不同,其中科技投入如果表现为清洁技术投入,则更有利于碳减排目标的实现;单因素调整的减排效果有一定的局限性,多因素综合模拟时,当条件满足第二产业固定资产投资比例为49.43%,第三产业投资比例达到46.94%,科技投入比例为2.70%,三次产业能源消耗结构比为74.87%:15.27%:9.86%,可接近实现山东省“十三五”低碳经济发展目标。Abstract: In order to investigate the influence of emission reduction policy on energy consumption and carbon emission, a system simulation model of energy consumption carbon emission in Shandong Province was constructed from the aspects of economy, energy, population and environment. On the basis of validating the model, the one-dimensional scenario and multi-dimensional comprehensive scenario simulations were carried out. The results showed that under the set scenario parameters, the adjustment of industrial structure, science and technology investment and energy structure could effectively promote carbon emission reduction, but the effects of emission reduction were different. If science and technology investment was represented by cleaner technology investment, it was more conducive to the realization of carbon emission reduction goals. The single factor adjustment had certain limitations in the emission reduction effect, while the multi-factor comprehensive simulation was close to achieve low carbon economic development targets in Shandong Province of the 13 th five year plan, with the second and third industry investment propertion in fixed assets investment of 49.43% and 46.94% respectively, the technology investment ratio of 2.70%, and the the energy consumption ratio of 74.87%:15.27%:9.86%.
-
Key words:
- carbon emission /
- simulation /
- low-carbon economy /
- Shandong Province
-
[1] TASESKA V, MARKOVSKA N, CAUSEVSLI A , et al. Greenhouse gases (GHG) emissions reduction in a power system predominantly based on lignite[J]. Energy, 2011,36(4):2266-2270. [2] 张玉秀 . 山东省能源消耗和二氧化碳排放总量控制模型及对策研究[D]. 济南:山东师范大学, 2018. [3] COSKUN A A, GENCAY G . Kyoto Protocol and “deforestation”:a legal analysis on Turkish environment and forest legislation[J]. Forest Policy and Economics, 2011,13(5):366-377. [4] PULIAFITO S E, GRAND M C . Modeling population dynamics and economic growth as competing species:an application to CO2 global emission[J]. Ecological Economics, 2008,65(3):602-615. [5] 王兵, 刘光天 . 节能减排与中国绿色经济增长:基于全要素生产率的视角[J]. 中国工业经济,2015(5):57-69.WANG B, LIU G T . Energy conservation and emission reduction and China’s green economic growth-based on a total factor productivity perspective[J]. China Industrial Economics,2015(5):57-69. [6] 段文斌, 刘大勇, 余泳泽 . 异质性产业节能减排的技术路径与比较优势-理论模型与实证检验[J]. 中国工业经济,2013(4):69-81.DUAN W B, LIU D Y, YU Y Z . Technology path choices and comparative advantages of heterogeneous industries for energy saving & emission reduction:theoretical model and empirical evidence[J]. China Industrial Economics,2013(4):69-81. [7] 林伯强, 蒋竺均 . 中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J]. 管理世界,2009(4):27-36. [8] 张巍 . 基于STIRPAT模型的陕西省工业碳排放量预测和情景分析[J]. 可再生能源, 2017,35(5):771-777.ZHANG W . Prediction and scenario analysis of industrial carbon emission in Shaanxi Province based on STIRPAT model[J]. Renewable Energy Resources, 2017,35(5):771-777. [9] 邱立新, 袁赛 . 政府干预、时空效应与典型城市碳减排[J]. 软科学, 2019,33(5):123-128.QIU L X, YUAN S . Government intervention,time-space effects and carbon emission reduction of typical cities[J]. Soft Science, 2019,33(5):123-128. [10] 席细平, 谢运生, 王贺礼 , 等. 基于IPAT模型的江西省碳排放峰值预测研究[J]. 江西科学, 2014,32(6):768-772.XI X P, XIE Y S, WANG H L , et al. Forecast of Jiangxi’s carbon emission to peak based on IPAT model[J]. Jiangxi Science, 2014,32(6):768-772. [11] 李雪梅, 张庆 . 天津市能源消耗碳排放影响因素及其情景预测[J]. 干旱区研究, 2019,36(4):997-1004.LI X M, ZHANG Q . Factors and scenario prediction of carbon emission from energy consumption in Tianjin[J]. Arid Zone Research, 2019,36(4):997-1004. [12] 宋杰鲲 . 山东省能源消耗碳排放预测[J]. 技术经济,2012(1):82.SONG J K . Prediction of carbon emission from energy consumption in Shandong Province[J]. Technology Economics,2012(1):82. [13] 董会忠, 王格 . 山东半岛蓝色经济区经济-环境复合系统仿真与发展对策研究[J]. 软科学, 2017,31(2):103-108.DONG H Z, WANG G . Study on simulation and development countermeasures of economy-environment composite system in Shandong peninsula blue economic zone[J]. Soft Science, 2017,31(2):103-108. [14] 张国兴, 高秀林, 汪应洛 , 等. 中国节能减排政策的测量、协同与演变:基于1978—2013年政策数据的研究[J]. 中国人口·资源与环境, 2014,24(12):62-73.ZHANG G X, GAO X L, WANG Y L , et al. Measurement,coordination and evolution of energy conservation and emission reduction policies in China:based on the research of the policy data from 1978 to 2013[J]. China Population,Resources and Environment, 2014,24(12):62-73. [15] 周雄勇, 许志端, 郗永勤 . 中国节能减排系统动力学模型及政策优化仿真[J]. 系统工程理论与实践, 2018,38(6):1422-1444.ZHOU X Y, XU Z D, XI Y Q . The system dynamic model and policy optimized simulation of energy conservation and emission reduction in China[J]. System Engineering-Theory & Practice, 2018,38(6):1422-1444. [16] 王同孝, 赵联振, 王伟 . 山东省能源消耗与碳排放分析[J]. 中国人口·资源与环境, 2012,7(22):49-52.WANG T X, ZHAO L Z, WANG W . Analysis of energy consumption and carbon emission in Shandong Province[J]. China Population,Resources and Environment, 2012,7(22):49-52. [17] 张国兴, 张振华, 管欣 , 等. 我国节能减排政策的措施与目标协同有效吗:基于1052条节能减排政策的研究[J]. 管理科学学报, 2017,20(3):162-181.ZHANG G X, ZHANG Z H, GUAN X , et al. Is the synergy between measures and objectives of energy conservation and emission reduction policies in China effective:research on 1052 energy conservation and emission reduction policies[J]. Journal of Management Sciences in China, 2017,20(3):162-181. [18] 何小刚, 张耀辉 . 技术进步、节能减排与发展方式转型:基于中国工业36个行业的实证考察[J]. 数量经济技术经济研究,2012(3):19-33.HE X G, ZHANG Y H . Technology progress,energy save and emission reduce and development pattern transformation[J]. The Journal of Quantitative & Technical Economics,2012(3):19-33. [19] 张志麒, 张保留, 罗宏 . 工业大气污染治理的环境经济政策体系研究[J]. 环境工程技术学报, 2019,9(3):312-319.ZHANG Z Q, ZHANG B L, LUO H . Research on environmental economic policy system of industrial air pollution control[J]. Journal of Environmental Engineering Technology, 2019,9(3):312-319. [20] 刘华军, 刘传明, 孙亚男 . 中国能源消耗的空间关联网络结构特征及其效应研究[J]. 中国工业经济,2015(5):83-95.LIU H J, LIU C M, SUN Y N . Spatial correlation network structure of energy consumption and its effect in China[J]. China Industrial Economics,2015(5):83-95.
点击查看大图
计量
- 文章访问数: 493
- HTML全文浏览量: 128
- PDF下载量: 166
- 被引次数: 0