The suppression effect and safety evaluation of poly-γ-glutamic acid, a novel biological dust suppressant
-
摘要: 研究了γ-聚谷氨酸(γ-PGA)的抑尘性能并对其安全性进行评价。采用滤纸负尘、定期模拟风蚀的方法,考察了不同分子量、不同浓度及与多糖复配γ-PGA的抑尘作用;以烟雾模拟扬尘,测试γ-PGA的抑尘效果;考察了γ-PGA对草地早熟禾种子萌发的影响及对碳钢的腐蚀情况。结果表明:高分子量γ-PGA抑尘率较高,12 d内抑尘率仅下降了10.6%;0.100%γ-PGA在第1、3、7、12天抑尘率高于其他组;γ-PGA与透明质酸(HA)、黄原胶(XG)均在复配比为2:1(质量比)下,抑尘率优于单独使用γ-PGA;喷施0.100%γ-PGA后颗粒物沉降速度比自然沉降速度明显加快,尤其对粒径较小的颗粒物效果较好;γ-PGA可促进草地早熟禾种子萌发;高浓度γ-PGA处理的碳钢片腐蚀率最低。
-
关键词:
- 生物抑尘剂 /
- γ-聚谷氨酸(γ-PGA) /
- 抑尘率 /
- 安全性评价
Abstract: The dust suppression effect of poly-γ-glutamic acid (γ-PGA) was studied and its safety was evaluated. The dust suppression effects of γ-PGA at different molecular weight, concentration and coordinated-effects with various polysaccharides were investigated respectively by filter paper loading dust and periodic simulation of wind erosion. The effect of γ-PGA on dust removal was tested by smog simulating dust. The effects of γ-PGA on seed germination of Poa pratensis L. and corrosion of carbon steel were investigated separately. The results showed that the dust suppression rate of high molecular weight γ-PGA was higher and only decreased by 10.6% within 12 days. The dust suppression rate of 0.100%γ-PGA was higher than other groups at 1st, 3rd, 7nd and 12th day. When γ-PGA was mixed with hyaluronic acid or xanthan gum in a ratio of 2:1, the dust suppression rates were higher than γ-PGA was used alone. After spraying 0.100% γ-PGA, the sedimentation rate of particles was significantly faster than that of natural sedimentation rate, especially for particles with small particle size. γ-PGA could promote growth of seed. The corrosion rate of carbon steel treated with high concentration γ-PGA was the lowest.-
Key words:
- biological dust suppressant /
- γ-PGA /
- dust suppression rate /
- safety evaluation
-
[1] 张宸 . 聚谷氨酸生物的合成及其在修复和改良土壤中的应用[J]. 水土保持通报, 2018,38(2):323-327.ZHANG C . Biosynjournal of poly-γ-glutamic acid and its application to soil remediation and improvement[J]. Bulletin of Soil and Water Conservation, 2018,38(2):323-327. [2] SHIH I L, VAN Y T . The production of poly-(gamma-glutamic acid) from microorganisms and its various applications[J]. Bioresource Technology, 2001,79(3):207-225. [3] BEN-ZUR N, GOLDMAN D M . γ-poly glutamic acid:a novel peptide for skin care[J]. Cosmetics & Toiletries, 2007,122:64-72. [4] 刘霞, 刘飞, 刘少英 , 等. 聚谷氨酸的保湿功效及安全性评价[J]. 日用化学工业, 2015,45(5):275-278.LIU X, LIU F, LIU S Y , et al. Moisture retention capacity and safety evaluation of poly-γ-glutamate[J]. China Surfactant Detergent & Cosmetics, 2015,45(5):275-278. [5] LIU X, LIU F, LIU S Y , et al. Poly-γ-glutamate from Bacillus subtilis inhibits tyrosinase activity and melanogenesis[J]. Applied Microbiology & Biotechnology, 2013,97(22):9801-9809. [6] 李汉涛, 杨国正, 柯云 , 等. 聚-γ-谷氨酸增效复合肥对油菜产量及其构成因素的影响[J]. 湖北农业科学, 2010,49(10):2395-2397.LI H T, YANG G Z, KE Y , et al. Effect of a strengthened compound fertilizer by poly-γ-glutamic acid on the yield and its components of rapeseed(Brassica napus L.)[J]. Hubei Agricultural Sciences, 2010,49(10):2395-2397. [7] 郝荣华, 张晓元, 刘飞 , 等. 不同分子量γ-聚谷氨酸对绿豆萌发及幼苗的影响[J]. 江苏农业科学, 2016,44(6):169-171. [8] 凌沛学, 刘飞, 张兰英 , 等 .一种抑控城市公共空间空气悬浮颗粒物的可降解抑尘剂:109321206A[P]. 2019 -02-12. [9] 徐海栋, 张雷波, 尹立峰 , 等. 化学抑尘剂的研究现状及进展评价[J]. 天津科技, 2015,42(6):10-13.XU H D, ZHANG L B, YIN L F , et al. Chemical dust suppressants:a review of present research status and an evaluation on their progresses[J]. Tianjin Science & Technology, 2015,42(6):10-13. [10] 杨汉宏, 张铁毅, 周永利 , 等 .一种复合型环保抑尘剂及其制备和应用:107880850A[P]. 2018 -04-06. [11] USHER J .Dust suppressant concentrate:2007216923-A1[P]. 2008 -04-10. [12] 郑向军, 李晋生, 薛峰 , 等. 新型环保道路抑尘剂在城市道路的应用[J]. 环境工程技术学报, 2014,4(2):169-172.ZHENG X J, LI J S, XUE F , et al. The applied research of new environment-friendly dust suppressant in city road[J]. Journal of Environmental Engineering Technology, 2014,4(2):169-172. [13] 许妍, 周启星 . 天津城市交通道路扬尘排放特征及空间分布研究[J]. 中国环境科学, 2012,32(12):2168-2173.XU Y, ZHOU Q X . Emission characteristics and spatial distribution of road fugitive dust in Tianjin,China[J]. China Environmental Science, 2012,32(12):2168-2173. [14] 沈琦, 张殿鹏, 郝雅荞 , 等. 出芽短梗霉新菌株RM1603产普鲁兰多糖条件优化及多糖分析[J]. 生物技术通讯, 2019,30(3):385-390.SHEN Q, ZHANG D P, HAO Y Q , et al. Optimum conditions and identification of pullulan produced by a new finding strain Aureobasidium pullulans RM1603[J]. Letters in Biotechnology, 2019,30(3):385-390. [15] 王珠珠, 王利强, 方丹丹 , 等. 胶原/壳聚糖抗菌海绵衬垫对三文鱼品质变化的影响[J]. 食品与机械, 2019,35(7):157-161.WANG Z Z, WANG L Q, FANG D D , et al. Effect of colagen/chitosan antibacterial sponge pad on salmon quality[J]. Food & Machinery, 2019,35(7):157-161. [16] 张伟, 张军敏, 张富强 , 等. 黄原胶对前交叉韧带切断术所致骨关节炎的疗效及其机制[J]. 药学学报, 2017,52(10):1533-1540.ZHANG W, ZHANG J M, ZHANG F Q , et al. Effect and mechanism of xanthan gum on osteoarthritis caused by anterior cruciate ligament transection[J]. Acta Pharmaceutica Sinica, 2017,52(10):1533-1540. [17] 赵伟杰, 刘靖康, 郭旭虹 , 等. 透明质酸壳聚糖复合凝聚体的流变性能研究[J]. 石河子大学学报, 2019,37(4):405-410.ZHAO W J, LIU J K, GUO X H , et al. Rheological studies of hyaluronic acid-chitosan complex coacervate[J]. Journal of Shihezi University, 2019,37(4):405-410. [18] LI Y, MCCLEMENTS D J . Controlling lipid digestion by encapsulation of protein-stabilized lipid droplets within alginate-chitosan complex coacervates[J]. Food Hydrocolloids, 2011,25(5):1025-1033.
点击查看大图
计量
- 文章访问数: 535
- HTML全文浏览量: 234
- PDF下载量: 71
- 被引次数: 0