Wetland loss identification based on remote sensing technology and its application in Binhai New Area, Tianjin City
-
摘要: 城市化进程的加快及对湿地资源的不合理开发利用造成湿地严重受损,开展湿地资源的时空变化监测对于湿地的合理开发和可持续发展具有重要作用。基于多时期土地利用数据和长时间序列的Landsat影像数据,利用马尔科夫转移矩阵和GIS空间分析法分析湿地类型受损状况,利用趋势分析法分析长时间序列和不同阶段的湿地植被、水体和土壤湿度要素受损状况,构建了湿地受损遥感识别方法,综合湿地类型和湿地要素受损状况,分析湿地受损模式,并在天津滨海新区进行案例研究。结果显示:滨海新区湿地类型受损主要分为3个时期(1980s—2000年、2000—2009年、2009—2015年),期间湿地经历了从受损到恢复的过程,1980s—2015年滨海新区湿地面积增加了41.40 km 2;1984—2015年湿地要素均呈退化趋势,植被、水体和土壤显著退化的面积分别为364.66、221.28和253.94 km 2。在不同时间段内,影响湿地面积受损的主导因素不同,3个时期滨海新区湿地受损分别是植被、水体和植被占主要地位。Abstract: The acceleration of the urbanization process and a series of unreasonable development and utilization of wetland resources have caused serious damage of the wetland, and the monitoring of the temporal and spatial changes of wetland resources plays important role in the regional development and sustainable development of wetland. Based on multi-period land use data and long-term sequence Landsat image data, the loss status of wetland types were analyzed by using Markov transfer matrix and GIS spatial analysis method. The trend analysis method was used to analyze the wetland vegetation, water body and soil moisture elements loss in long-term sequences and different stages. The remote sensing identification method of wetland loss was constructed, and the wetland loss patterns were summarized combined with wetland type and wetland element loss, with a case study in Tianjin Binhai New Area. The results showed that the damage of wetland types in Binhai New Area was mainly divided into three periods (1980s-2000, 2000-2009, 2009-2015). From 1980s to 2015, the wetland experienced the process from damage to recovery, and the wetland area increased by 41.40 km 2. Wetland elements showed a degradation trend from 1984 to 2015. The areas of significant degradation of NDVI, NDWI and SMMI were 364.66, 221.28 and 253.94 km 2, respectively. In three different periods, different dominant factors affected the damaged area of wetland. In Binhai New Area, the wetland loss was mainly caused by vegetation, water area and vegetation during the three periods.
-
Key words:
- coastal wetland /
- loss identification /
- remote sensing /
- Tianjin Binhai New Area
-
[1] JIANG W, LÜ J, WANG C , et al. Marsh wetland degradation risk assessment and change analysis:a case study in the Zoige Plateau,China[J]. Ecological Indicators, 2017,82:316-326. [2] 祁增营, 王京, 左正立 . 湿地变化监测研究现状与展望[J]. 遥感信息, 2012,27(6):124-132.QI Z Y, WANG J, ZUO Z L . Current status and prospect of researches on wetland change monitoring[J]. Remote Sensing Information, 2012,27(6):124-132. [3] BEUEL S, ALVAREZ M, AMLER E , et al. A rapid assessment of anthropogenic disturbances in East African wetlands[J]. Ecological Indicators, 2016,67:684-692. [4] MONDAL B, DOLUI G, PRAMANIK M , et al. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland,India[J]. Ecological Indicators, 2017,83:62-73. [5] GONG P, NIU Z G, CHENG X , et al. China’s wetland change (1990-2000) determined by remote sensing[J]. Science China Earth Sciences, 2010,53(7):1036-1042. [6] 刘子潇, 邵金修, 李承鑫 , 等. 天津市滨海新区湿地动态变化监测研究[J]. 城市勘测,2018(3):99-104.LIU Z X, SHAO J X, LI C X , et al. A study on monitoring dynamic change of wetland in Tianjin Binhai New Area[J]. Urban Geotechnical Investigation & Surveying,2018(3):99-104. [7] 魏帆, 韩广轩, 张金萍 , 等. 1985—2015年围填海活动影响下的环渤海滨海湿地演变特征[J]. 生态学杂志, 2018,37(5):1527-1537.WEI F, HAN G X, ZHANG J P , et al. Evolution of coastal wetlands under the influence of sea reclamation in Bohai Rim during 1985-2015[J]. Chinese Journal of Ecology, 2018,37(5):1527-1537. [8] PEKEL J F, COTTAM A, GORELICK N , et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016,540(7633):418-422. [9] TANG Z, LI Y, GU Y , et al. Assessing Nebraska playa wetland inundation status during 1985-2015 using Landsat data and Google Earth Engine[J]. Environmental Monitoring and Assessment, 2016,188(12):654. [10] PETUS C, LEWIS M, WHITE D . Monitoring temporal dynamics of Great Artesian Basin wetland vegetation,Australia,using MODIS NDVI[J]. Ecological Indicators, 2013,34:41-52. [11] 刘迪 . 湿地变化遥感诊断:以内蒙古鄂尔多斯遗鸥国家级自然保护区为例[D].北京:中国科学院大学( 中国科学院遥感与数字地球研究所), 2017. [12] 苗钰婷 . 基于遥感数据的2000年—2016年天津近岸自然湿地变化研究[J].吉林农业, 2018(9):56. [13] 李文艳 . 天津滨海湿地生态系统退化指标体系的构建与评价研究[D]. 济南:山东师范大学, 2011. [14] 吕金霞, 蒋卫国, 王文杰 , 等. 近30年来京津冀地区湿地景观变化及其驱动因素[J]. 生态学报, 2018,38(12):4492-4503.LÜ J X, JIANG W G, WANG W J , et al. Wetland landscape pattern change and its driving forces in Beijing-Tianjin-Hebei region in recent 30 years[J]. Acta Ecologica Sinica, 2018,38(12):4492-4503. [15] 袁丽华, 蒋卫国, 申文明 , 等. 2000—2010年黄河流域植被覆盖的时空变化[J]. 生态学报, 2013,33(24):7798-7806.YUAN L H, JIANG W G, SHEN W M , et al. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010[J]. Acta Ecologica Sinica, 2013,33(24):7798-7806. [16] YUAN F, BAUER M E . Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007,106(3):375-386. [17] McFEETERS S K . The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432. [18] LIU Y, MA W Y, YUE H, et al. Dynamic soil moisture monitoring in Shendong mining area using temperature vegetation dryness index [C]//International Conference on Remote Sensing.New York:IEEE, 2011.
点击查看大图
计量
- 文章访问数: 569
- HTML全文浏览量: 212
- PDF下载量: 141
- 被引次数: 0