-
摘要: 沉积物中有机磷通过转化为无机磷被藻类利用,加速水体富营养化进程。采集巢湖沉积物柱状样品,用Ivanoff连续提取法分级提取不同深度沉积物中有机磷,测定了沉积物中碱性磷酸酶的活性,并研究了碱性磷酸酶对沉积物中碳酸氢钠提取态有机磷(NaHCO3-Po)、盐酸提取态有机磷(HCl-Po)、氢氧化钠提取态有机磷(NaOH-Po)的水解效果。结果表明:东半湖区C14采样点的有机磷浓度高于西半湖区C4采样点,C4采样点NaOH-Po、HCl-Po、NaHCO3-Po和残渣态-Po浓度占总有机磷浓度的比例分别为41.70%、12.82%、11.05%和2.22%,C14采样点分别为43.75%、19.00%、6.12%和 4.22%,2个采样点不同形态有机磷浓度均为NaOH-Po>HCl-Po>NaHCO3-Po>残渣态-Po;C4采样点的碱性磷酸酶活性高于C14采样点,这与西半湖区富营养化程度较高有关;NaHCO3-Po、HCl-Po、NaOH-Po均能被碱性磷酸酶水解,C4和C14采样点表层沉积物中各形态有机磷的水解比例显著高于下层沉积物,说明人类活动产生的有机磷生物可利用性较高,其中,以简单小分子化合物为主的NaHCO3-Po被水解的比例最高,为65.78%~69.47%。Abstract: Organic phosphorus in sediments can be converted into inorganic phosphorus, which may accelerate lake eutrophication process. Sectional sediment samples were collected in Lake Chaohu, organic phosphorus in sediments were extracted by Ivanoff method, and alkaline phosphatase activity in sediments were determined. The hydrolysis effects of alkaline phosphatase on NaHCO3 extracted Po (NaHCO3-Po), HCl extracted Po (HCl-Po) and NaOH extracted Po (NaOH-Po) in sediments were studied. The results indicated that Po content at C14 sampling station in the eastern half of the lake was higher than that at C4 sampling station in the western half of the lake. The proportion of NaOH-Po, HCl-Po, NaHCO3-Po and Residual-Po in total organic phosphorus was 41.70%, 12.82%, 11.05% and 2.22%, respectively at C4 sampling station, 43.75%, 19.00%, 6.12% and 4.22%, respectively at C4 sampling station, and the concentrations of different forms of organic phosphorus were in the order of NaOH-Po>HCl-Po>NaHCO3-Po>Residual-Po. The alkaline phosphatase activity at C4 sampling station was higher than that at C14 sampling station due to high eutrophication level in the western half of Lake Chaohu. NaHCO3-Po, HCl-Po and NaOH-Po could be hydrolyzed by alkaline phosphatase, and the hydrolysis contents of various organic phosphorus in surface layers at C4 and C14 stations were significantly higher than those in deep layers, indicating that the bioavailability of organic phosphorus produced by human activities were higher. Indeed, the hydrolysis ratio of NaHCO3-Po was highest with 65.78%-69.47% averaged values due to its simple and small molecular compounds.
-
Key words:
- bioavailability /
- organic phosphorus /
- alkaline phosphatase /
- hydrolysis
-
[1] 杨长明, 徐琛, 尹大强 , 等. 巢湖城市内河沉积物不同形态磷空间分布特征[J]. 同济大学学报(自然科学版), 2011,39(12):1832-1837.YANG C M, XU C, YIN D Q , et al. Phosphorus forms and vertical distribution in sediments of urban rivers in Chaohu City[J]. Journal of Tongji University(Natural Science), 2011,39(12):1832-1837. [2] SULU-GAMBARI F, SEITAJ D, MEYSMAN F J R , et al. Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin[J]. Environmental Science & Technology, 2015,50(3):1227-1233. [3] 刘超, 朱淮武, 王立英 , 等. 滇池与红枫湖沉积物中磷的地球化学特征比较研究[J]. 环境科学学报, 2013,33(4):1073-1079.LIU C, ZHU H W, WANG L Y , et al. Comparative study on the geochemical characteristics of phosphorus in sediments from Lake Dianchi and Hongfeng[J]. Acta Scientiae Circumstantiae, 2013,33(4):1073-1079. [4] ZHANG R, WU F, LIU C , et al. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau,China[J]. Environmental Pollution, 2008,152(2):366-372. [5] 张友, 宋佳伟, 吕迎春 , 等. 荣成天鹅湖沉积物有机磷的生物有效性及其时空动态[J]. 环境科学学报, 2017,37(12):184-190.ZHANG Y, SONG J W, LÜ Y C , et al. Bioavailability and variations of organic phosphorus in sediments of Swan Lake,Rongcheng[J]. Acta Scientiae Circumstantiae, 2017,37(12):184-190. [6] 龚佳健, 倪兆奎, 肖尚斌 , 等. 覆盖材料对洱海不同湖区沉积物溶解态有机磷和无机磷释放影响及差异[J]. 环境科学, 2019,40(4):1826-1833.GONG J J, NI Z K, XIAO S B , et al. Effects and differences of the release of dissolved organic and inorganic phosphorus in different sediments covered by different materials of Erhai Lake[J]. Environmental Science, 2019,40(4):1826-1833. [7] 杨宏伟, 高光 . 太湖流域不同类型区河流水体磷形态分布及矿化速率[J]. 土壤学报, 2012,49(4):758-763.YANG H W, GAO G . Distribution and mineralization rate of phosphorus in different polluted rivers in Taihu Basin[J]. Acta Pedologica Sinica, 2012,49(4):758-763. [8] 张友 . 荣成天鹅湖湿地有机磷分布和周转特征研究[D]. 烟台:中国科学院烟台海岸带研究所, 2017. [9] TURNER B L, MCKELVIE I D, HAYGARTH P M . Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis[J]. Soil Biology & Biochemistry, 2002,34(1):27-35. [10] CRIQUET S, FERRE E, FARNET A M , et al. Annual dynamics of phosphatase activities in an evergreen oak litter:influence of biotic and abiotic factors[J]. Soil Biology & Biochemistry, 2004,36(7):1111-1118. [11] ZHU Y R, FENG C W, ZHONG Q H , et al. Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis[J]. Environmental Science & Technology, 2013,47(14):7679-7687. [12] 孔明, 张路, 尹洪斌 , 等. 蓝藻暴发对巢湖表层沉积物氮磷及形态分布的影响[J]. 中国环境科学, 2014,34(5):1285-1292.KONG M, ZHANG L, YIN H B , et al. Influence of algae bloom on distribution of total and speciation of nitrogen and phosphorus in the surface sediments from Lake Chaohu[J]. China Environmental Science, 2014,34(5):1285-1292. [13] 苗慧, 沈峥, 蒋豫 , 等. 巢湖表层沉积物氮、磷、有机质的分布及污染评价[J]. 生态环境学报, 2017,26(12):2120-2125.MIAO H, SHEN Z, JIANG Y , et al. Distribution characteristics and pollution assessment of nitrogen,phosphorus and organic matter in surface sediments of Chaohu Lake[J]. Ecology and Environmental Sciences, 2017,26(12):2120-2125. [14] 范成新 . 湖泊沉积物调查规范[M]. 北京:科学出版社 2018: 463-465. [15] 张翠兰, 徐德兰, 万蕾 , 等. 环境因子对湖泊沉积物碱性磷酸酶活性的影响[J]. 环境科学与技术, 2013,36(4):23-27.ZHANG C L, XU D L, WAN L , et al. Impact of environmental factors on alkaline phosphatase activity of sediment in lakes[J]. Environmental Science & Technology, 2013,36(4):23-27. [16] HADAS O, PINKAS R . Arylsulfatase and alkaline phosphatase activity in sediments of Lake Kinneret,Israel[J]. Water,Air and Soil Pollution, 1997,99(1∕2∕3∕4):671-679. [17] IVANOFF D B, REDDY K R, ROBINSON S . Chemical fraction of organic phosphorus in selected histosols[J]. Soil Science, 1998,163(1):36-45. [18] 昝逢宇, 霍守亮, 席北斗 , 等. 巢湖近代沉积物及其间隙水中营养物的分布特征[J]. 环境科学学报, 2010,30(10):2088-2096.ZAN F Y, HUO S L, XI B D , et al. Characteristics of nutrient profiles in sediments and pore water of Lake Chaohu[J]. Acta Scientiae Circumstantiae, 2010,30(10):2088-2096. [19] 丁虹 . 巢湖2005—2014年湖体水质状况[J]. 水资源开发与管理, 2016(3):57-59.DING H.Water quality conditions of Chaohu Lake during 2005 -2014[J]. Water Resources Development and Management, 2016(3):57-59. [20] 李强, 霍守亮, 王晓伟 , 等. 巢湖及其入湖河流表层沉积物营养盐和粒度的分布及其关系研究[J]. 环境工程技术学报, 2013,3(2):147-155.LI Q, HUO S L, WANG X W , et al. Distribution and correlation of nutrients and particle size in surface sediments of Lake Chaohu and its inflow rivers[J]. Journal of Environmental Engineering, 2013,3(2):147-155. [21] 李国莲, 谢发之, 张瑾 , 等. 巢湖水及沉积物中总磷的分布变化特征[J]. 长江流域资源与环境, 2016,25(5):830-836.LI G L, XIE F Z, ZHANG J , et al. Spatial and temporal variation of phosphorus in water and sediment from Chaohu Lake[J]. Resources and Environment in the Yangtze Basin, 2016,25(5):830-836. [22] 汤宝靖, 陈雷, 姜霞 , 等. 巢湖沉积物磷的形态及其与间隙水磷的关系[J]. 农业环境科学学报, 2009,28(9):1867-1873.TANG B J, CHEN L, JIANG X , et al. Phosphorus speciations in sediments and their relationships with soluble phosphorus concentrations in porewater in Lake Chaohu[J]. Journal of Agro-Environment Science, 2009,28(9):1867-1873. [23] 马双丽, 倪兆奎, 王圣瑞 , 等. 鄱阳湖沉积物有机磷形态及对水位变化响应[J]. 环境科学学报, 2016,36(10):3607-3614.MA S L, NI Z K, WANG S R , et al. Organic phosphorus forms in sediments and their relationship with the change of water level in Poyang Lake[J]. Acta Scientiae Circumstantiae, 2016,36(10):3607-3614. [24] 徐健, 袁旭音, 叶宏萌 , 等. 闽江上游溪流沉积物有机磷空间分布及其环境意义分析[J]. 环境科学, 2019,40(5):2186-2193.XU J, YUAN X Y, YE H M , et al. Spatial distribution of organic phosphorus in sediment and its environmental implication in the upper stream of Minjiang River[J]. Environmental Science, 2019,40(5):2186-2193. [25] 霍守亮, 李青芹, 昝逢宇 , 等. 我国不同营养状态湖泊沉积物有机磷形态分级特征研究[J]. 环境科学, 2011,32(4):1001-1007.HUO S L, LI Q Q, ZAN F Y , et al. Characteristics of organic phosphorus fractions in different trophic sediments of lakes,China[J]. Environmental Science, 2011,32(4):1001-1007. [26] 宋炜, 袁丽娜, 肖琳 , 等. 太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系[J]. 环境科学, 2007,28(10):2355-2360.SONG W, YUAN L N, XIAO L , et al. ALPase activity and the distribution of phosphate solubilizing bacteria and the relationship between them in sediments of Lake Taihu[J]. Environmental Science, 2007,28(10):2355-2360. [27] 徐德兰, 万蕾, 高明侠 , 等. 骆马湖东部沉积物中氮磷含量和碱性磷酸酶活性季节变化[J]. 农业环境科学学报, 2012,31(7):1387-1392.XU D L, WAN L, GAO M X , et al. Seasonal variations of nitrogen and phosphorus content and alkaline phosphatase activity in sediment in eastern shore of Luoma Lake,China[J]. Journal of Agro-Environment Science, 2012,31(7):1387-1392. [28] ZHOU Y, SONG C, CAO X , et al. Phosphorus fractions and alkaline phosphatase activity in sediments of a large eutrophic Chinese lake(Lake Taihu)[J]. Hydrobiologia, 2008,599(1):119-125. [29] 李文华, 邵学新, 吴明 , 等. 杭州湾潮滩湿地土壤碱性磷酸酶活性分布及其与磷形态的关系[J]. 环境科学学报, 2013,33(12):3341-3349.LI W H, SHAO X X, WU M , et al. Soil alkaline phosphatase activity and its relationship with phosphorus forms of Hangzhou Bay Intertidal Wetland[J]. Acta Scientiae Circumstantiae, 2013,33(12):3341-3349. [30] WORSFOLD P J, MONBET P, TAPPIN A D , et al. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems:a review[J]. Analytica Chimica Acta, 2008,624(1):37-58. [31] COTTINGHAM K L, EWING H A, GREER M L , et al. Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling[J]. Ecosphere 2015,6(1):1-19.
点击查看大图
计量
- 文章访问数: 531
- HTML全文浏览量: 136
- PDF下载量: 155
- 被引次数: 0