留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工湿地脱氮影响因素及强化措施研究进展

王海燕 赵远哲 王文富 董伟羊 闫国凯 常洋

王海燕, 赵远哲, 王文富, 董伟羊, 闫国凯, 常洋. 人工湿地脱氮影响因素及强化措施研究进展[J]. 环境工程技术学报, 2020, 10(4): 585-597. doi: 10.12153/j.issn.1674-991X.20190150
引用本文: 王海燕, 赵远哲, 王文富, 董伟羊, 闫国凯, 常洋. 人工湿地脱氮影响因素及强化措施研究进展[J]. 环境工程技术学报, 2020, 10(4): 585-597. doi: 10.12153/j.issn.1674-991X.20190150
WANG Haiyan, ZHAO Yuanzhe, WANG Wenfu, DONG Weiyang, YAN Guokai, CHANG Yang. A review of influencing factors and enhanced measures for nitrogen removal of constructed wetlands[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 585-597. doi: 10.12153/j.issn.1674-991X.20190150
Citation: WANG Haiyan, ZHAO Yuanzhe, WANG Wenfu, DONG Weiyang, YAN Guokai, CHANG Yang. A review of influencing factors and enhanced measures for nitrogen removal of constructed wetlands[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 585-597. doi: 10.12153/j.issn.1674-991X.20190150

人工湿地脱氮影响因素及强化措施研究进展

doi: 10.12153/j.issn.1674-991X.20190150
详细信息
    作者简介:

    王海燕(1976—),女,研究员,博士,主要从事水污染控制原理与技术研究,wanghy@craes.org.cn

  • 中图分类号: X703

A review of influencing factors and enhanced measures for nitrogen removal of constructed wetlands

  • 摘要: 系统梳理了近年来国内外有关人工湿地脱氮影响因素及强化脱氮措施的研究进展。详细阐述了人工湿地中植物吸收、基质吸附和微生物氨化、硝化与反硝化及厌氧氨氧化的脱氮机理;分析了进水碳氮比(C/N)、水力停留时间(HRT)、植物种类、湿地运行方式、温度、pH和溶解氧(DO)浓度等主要因素对脱氮效率的影响;在此基础上,综述了外加碳源、优化植物配置、新型基质开发、人工增氧和保温等强化脱氮的具体措施及其效果;最后对人工湿地脱氮的研究发展方向进行了展望。

     

  • [1] United States Environmental Protection Agency. Constructed treatment wetlands:EPA 843-F-03-013[A/OL].( 2004-04-06)[2019-12-25]. http://www.epa.gov/owow/wetlands/pdf/ConstructedW.pdf.
    [2] WU H, FAN J, ZHANG J, et al. Intensified organics and nitrogen removal in the intermittent-aerated constructed wetland using a novel sludge-ceramsite as substrate[J]. Bioresource Technology, 2016,210:101-107.
    pmid: 26832393
    [3] 赖长邈, 孟庆杰. 人工湿地处理工业废水研究进展综述[J]. 环境科学导刊, 2018,37(5):75-83.

    LAI C M, MENG Q J. Review on the progress of industrial wastewater treatment by constructed wetland[J]. Environmental Science Survey, 2018,37(5):75-83.
    [4] DING X W, XUE Y, ZHAO Y, et al, Effects of different covering systems and carbon nitrogen ratios on nitrogen removal in surface flow constructed wetlands[J]. Journal of Cleaner Production, 2018,172:541-551.
    doi: 10.1016/j.jclepro.2017.10.170
    [5] ÁVILA C, CRISTINA P, SEZERINO P H, et al. Enhancement of total nitrogen removal through effluent recirculation and fate of PPCPs in a hybrid constructed wetland system treating urban wastewater[J]. Science of the Total Environment, 2017,584/585:414-425.
    [6] ZHANG X, HU Z, NGO H H, et al. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland[J]. Water Research, 2018,130:79-87.
    doi: 10.1016/j.watres.2017.11.061 pmid: 29202344
    [7] SAEED T, MIAH M J, KHAN T, et al. Pollutant removal employing tidal flow constructed wetlands:media and feeding strategies[J/OL]. Chemical Engineering Journal,2019,382(2019-09-17)[2019-09-20]. https://doi.org/10.1016/j.cej. . 2019. 122874.
    [8] STOTTMEISTER U, WIELINER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advance, 2003,22:93-117.
    doi: 10.1016/j.biotechadv.2003.08.010
    [9] 徐德福, 徐建民, 王华胜, 等. 湿地植物对富营养化水体中氮、磷吸收能力研究[J]. 植物营养与肥料学报, 2005,11(5):597-601.
    doi: 10.11674/zwyf.2005.0505

    XU D F, XU J M, WANG H S, et al. Absorbability of wetland plants on N and P from eutrophic water[J]. Journal of Plant Nutrition and Fertilizer, 2005,11(5):597-601. doi: 10.11674/zwyf.2005.0505
    [10] 李林锋, 年跃刚, 蒋高明, 等. 植物吸收在人工湿地脱氮除磷中的贡献[J]. 环境科学研究, 2009,22(3):337-342.

    LI L F, NIAN Y G, JIANG G M, et al. Contribution of macrophytes assimilation in constructed wetlands to nitrogen and phosphorous removal[J]. Research of Environmental Sciences, 2009,22(3):337-342.
    [11] 王亮. 复合垂直流人工湿地对污水深度处理研究[D]. 合肥:合肥工业大学, 2016.
    [12] STEFANAKIS A I, AKRATOS C S, GIKAS G D, et al. Effluent quality improvement of two pilot-scale,horizontal subsurface flow constructed wetlands using natural zeolite (clinoptilolite)[J]. Microporous & Mesoporous Materials, 2009,124(1/2/3):131-143.
    [13] ZHANG L, MU L, XIONG Y, et al. The development of a natural heating technology for constructed wetlands in cold climates[J]. Ecological Engineering, 2015,75:51-60.
    doi: 10.1016/j.ecoleng.2014.11.025
    [14] 王万宾, 胡飞, 孔令瑜, 等. 人工湿地脱氮除磷基质的吸附能力及其影响因子[J]. 湿地科学, 2016,14(1):122-128.

    WANG W B, HU F, KONG L Y, et al. Adsorption capacity of substrates of denitrification and dephosphorization in constructed wetlands and their influencing factors[J]. Wetland Science, 2016,14(1):122-128.
    [15] 彭党聪. 水污染控制工程[M].3版. 北京: 冶金工业出版社, 2010.
    [16] DORLAND S, BEAUCHAMP E G. Denitrification and ammonification at low soil temperatures[J]. Canadian Journal of Soil Science, 1991,71(3):293-303.
    doi: 10.4141/cjss91-029
    [17] RIOS-DEL TORO E E, CERVANTES F J. Anaerobic ammonium oxidation in marine environments:contribution to biogeochemical cycles and biotechnological developments for wastewater treatment[J]. Reviews in Environmental Science and Bio-Technology, 2019,18(1):11-27.
    [18] 任婕, 林晓虎, 刘伟, 等. 硫自养反硝化强化人工湿地深度处理冷轧废水[J]. 环境工程, 2018,36(4):6-10.

    REN J, LIN X H, LIU W, et al. Cold rolling wastewater treatment by sulfur autotrophic denitrification enhanced constructed wetlands[J]. Environmental Engineering, 2018,36(4):6-10.
    [19] WANG J, HOU J, XIA L, et al. The combined effect of dissolved oxygen and COD/N on nitrogen removal and the corresponding mechanisms in intermittent aeration constructed wetlands[J]. Biochemical Engineering Journal, 2020,153(1):9.
    [20] 黄娟, 王世和, 雒维国. 芦苇潜流人工湿地氮转移规律的定量分析[J]. 安全与环境工程, 2008,15(3):41-44.

    HUANG J, WANG S H, LUO W G. Quantitative analysis of nitrogen transferring rule in subsurface flow constructed wetlands with reeds[J]. Safety and Environmental Engineering, 2008,15(3):41-44.
    [21] 吴树彪, 董仁杰. 人工湿地生态水污染控制理论与技术[M]. 北京: 中国林业出版社, 2016.
    [22] 李辉, 徐新阳, 李培军, 等. 人工湿地中氨化细菌去除有机氮的效果[J]. 环境工程学报, 2008,2(8):1044-1047.

    LI H, XU X Y, LI P J, et al. Research on ammonibacteria removing organic nitrogen in construction wetland[J]. Chinese Journal of Environmental Engineering, 2008,2(8):1044-1047.
    [23] 赵婷婷, 范培成, 姚立荣, 等. 氨化细菌对植物浮岛人工湿地中有机氮强化分解[J]. 农业工程学报, 2011,27(13):223-226.

    ZHAO T T, FAN P C, YAO L R, et al. Ammonifying bacteria in plant floating island of constructed wetland for strengthening decomposition of organic nitrogen[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(13):223-226.
    [24] 卢少勇, 金相灿, 余刚. 人工湿地的氮去除机理[J]. 生态学报, 2006,26(8):2670-2677.

    LU S Y, JIN X C, YU G. Nitrogen removal mechanism of constructed wetland[J]. Chinese Journal of Ecology, 2006,26(8):2670-2677.
    [25] SPIELES D J, MITSCH W J. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:a comparison of low- and high-nutrient riverine systems[J]. Ecological Engineering, 1999,14(1/2):77-91.
    doi: 10.1016/S0925-8574(99)00021-X
    [26] ERLER D V, EYRE B D, DAVISON L. The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland[J]. Environmental Science & Technology, 2008,42(24):9144-9150.
    pmid: 19174884
    [27] LI H, TAO W. Efficient ammonia removal in recirculating vertical flow constructed wetlands:complementary roles of anammox and denitrification in simultaneous nitritation,anammox and denitrification process[J]. Chemical Engineering Journal, 2017,317:972-979.
    doi: 10.1016/j.cej.2017.02.143
    [28] HU Y S. Achieving high-rate autotrophic nitrogen removal via Canon process in a modified single bed tidal flow constructed wetland[J]. Chemical Engineering Journal, 2014,237:329-335.
    doi: 10.1016/j.cej.2013.10.033
    [29] ZHAI J, RAHAMAN M H, CHEN X, et al. New nitrogen removal pathways in a full-scale hybrid constructed wetland proposed from high-throughput sequencing and isotopic tracing results[J]. Ecological Engineering, 2016,97:434-443.
    doi: 10.1016/j.ecoleng.2016.10.045
    [30] WAKI M, YASUDA T, SUZUKI K, et al. Distribution of anammox bacteria in a free-water-surface constructed wetland with wild rice (Zizania latifolia)[J]. Ecological Engineering, 2015,81:165-172.
    doi: 10.1016/j.ecoleng.2015.04.005
    [31] PAREDS D, KUSCHK P, KOSER H. Influence of plants and organic matter on the nitrogen removal in laboratory-scale model subsurface flow constructed wetlands inoculated with anaerobic ammonium oxidizing bacteria[J]. Engineering in Life Sciences, 2007,7(6):565-576.
    doi: 10.1002/(ISSN)1618-2863
    [32] TAO W D, WANG J. Effect of vegetation, limestone and aeration on nitritation,anammox and denitrification in wetland treatment systems[J]. Ecological Engineering, 2009,35(5):836-842.
    doi: 10.1016/j.ecoleng.2008.12.003
    [33] WANG L, LI T. Anaerobic ammonium oxidation in constructed wetlands with bio-contact oxidation as pretreatment[J]. Ecological Engineering, 2011,37:1225-1230.
    doi: 10.1016/j.ecoleng.2011.03.008
    [34] 吕露遥, 杨永哲, 张雷, 等. 多级垂直潮汐流人工湿地厌氧氨氧化脱氮研究[J]. 水处理技术, 2019,45(10):114-120.

    LÜ L Y, YANG Y Z, ZHANG L, et al. Study on nitrogen removal by anaerobic ammonium oxidation in multi-stage vertical tidal flow constructed wetlands[J]. Water Treatment Technology, 2019,45(10):114-120.
    [35] WANG J L, YANG N. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004,39(10):1223-1229.
    doi: 10.1016/S0032-9592(03)00249-8
    [36] PAREDES D, KUSCHK P, STANGE F, et al. Model experiments on improving nitrogen removal in laboratory scale subsurface constructed wetlands by enhancing the anaerobic ammonia oxidation[J]. Water Science & Technology, 2007,56(3):145.
    pmid: 17802849
    [37] VYMAZAL J, KRPFELOVÁ L. Removal of organics in constructed wetlands with horizontal sub-surface flow:a review of the field experience[J]. Science of the Total Environment, 2009,407(13):3911-3922.
    pmid: 18822446
    [38] 成水平, 王月圆, 吴娟. 人工湿地研究现状与展望[J]. 湖泊科学, 2019,31(6):1489-1498.
    doi: 10.18307/2019.0625

    CHENG S P, WANG Y Y, WU J. Advances and prospect in the studies on constructed wetlands[J]. Journal of Lake Sciences, 2019,31(6):1489-1498. doi: 10.18307/2019.0625
    [39] COSKUN D, BRITTO D T, SHI W, et al. How plant root exudates shape the nitrogen cycle[J]. Trends in Plant Science, 2017,22:661-673.
    pmid: 28601419
    [40] PERBANGKHEM T, POLPRASERT C. Biomass production of papyrus (Cyperus papyrus) in constructed wetland treating low-strength domestic wastewater[J]. Bioresource Technology, 2010,101(2):833-835.
    doi: 10.1016/j.biortech.2009.08.062 pmid: 19758797
    [41] 黄娟, 王世和, 鄢璐, 等. 潜流型人工湿地硝化和反硝化作用强度研究[J]. 环境科学, 2007,28(9):1965-1969.

    HUANG J, WANG S H, YAN L, et al. Intensity of nitrification and denitrification in subsurface-flow constructed wetlands[J]. Environmental Science, 2007,28(9):1965-1969.
    [42] MENDES L R D, TONDERSKI K, IVERSEN B V, et al. Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water[J]. Ecological Engineering, 2018,120:94-103.
    doi: 10.1016/j.ecoleng.2018.05.022
    [43] DILUCA G A, MAINE M A, MUFARREGE M M, et al. Phosphorus distribution pattern in sediments of natural and constructed wetlands[J]. Ecological Engineering, 2017,108:227-233.
    doi: 10.1016/j.ecoleng.2017.08.038
    [44] 卢少勇, 万正芬, 李锋民, 等. 29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究, 2016,29(8):1187-1194.

    LU S Y, WAN Z F, LI F M, et al. Ammonia nitrogen adsorption and desorption characteristics of twenty-nine kinds of constructed wetland substrates[J]. Research of Environmental Sciences, 2016,29(8):1187-1194.
    [45] 武海涛. 人工湿地反硝化脱氮外加碳源选择研究[D]. 杭州:浙江大学, 2013.
    [46] MONTEITH H D, BRIDLE T R, SUTTON P M. Industrial waste carbon sources for biological denitrification-water pollution research and development[J]. Water Pollution Research & Development, 1981,13(6):127-141.
    [47] BAKER L A. Design considerations and applications for wetland treatment of high-nitrate waters[J]. Water Science Technology, 1998,38:389-395.
    doi: 10.2166/wst.1998.0088
    [48] LI H F, LIU F, LUO P, et al. Stimulation of optimized influent C∶N ratios on nitrogen removal in surface flow constructed wetlands:performance and microbial mechanisms[J/OL].Science of the Total Environment,2019.[2019-12-30]https://doi.org/10.1016/j.scitotenv. 2019. 07. 381.
    [49] ZHU H, YAN B, XU Y, et al. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios[J]. Ecological Engineering, 2014,63:58-63.
    doi: 10.1016/j.ecoleng.2013.12.018
    [50] LI M, WU H M, ZHANG J, et al. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent:effect of C/N ratios[J]. Bioresource Technology, 2017,240:157-164.
    doi: 10.1016/j.biortech.2017.02.054 pmid: 28262303
    [51] ALBERT M, BÉLINE , DABERT P. Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing:an overview[J]. Journal of Environmental Management, 2013,131(6):170-184.
    doi: 10.1016/j.jenvman.2013.09.021
    [52] 徐丽, 葛大兵, 谢小魁. 水力停留时间对人工湿地运行的影响[J]. 中国农学通报, 2014,30(31):219-223.

    XU L, GE D B, XIE X K. Impact of hydraulic retention time on wetland running[J]. Chinese Agricultural Science Bulletin, 2014,30(31):219-223.
    [53] MENG F C, FENG L J, YIN H J, et al. Assessment of nutrient removal and microbial population dynamics in a non-aerated vertical baffled flow constructed wetland for contaminated water treatment with composite biochar addition[J]. Journal of Environmental Management, 2019,246:355-361.
    doi: 10.1016/j.jenvman.2019.06.011 pmid: 31185322
    [54] 乌兰托娅. 水力停留时间对水平潜流人工湿地脱氮除磷的影响研究[J]. 广东农业科学, 2012,39(12):177-178.
    [55] 靳同霞, 张永静, 王程丽, 等. 2种人工湿地的水力停留时间及净化效果[J]. 环境工程学报, 2012,6(3):883-890.

    JIN T X, ZHANG Y J, WANG C L, et al. Hydraulic retention time and purification effect of two kinds of constructed wetlands[J]. Chinese Journal of Environmental Engineering, 2012,6(3):883-890.
    [56] GHOSH D, GOPAL B. Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland[J]. Ecological Engineering, 2010,36(8):1044-1051.
    doi: 10.1016/j.ecoleng.2010.04.017
    [57] AKRATOS C S, TSIHRINTZIS V A. Effect of temperature,HRT,vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2007,29(2):173-191.
    doi: 10.1016/j.ecoleng.2006.06.013
    [58] 梁雪. 人工湿地植物的功能与选择[J]. 水生态学杂志, 2012,33(1):131-138.

    LIANG X. Function and selection of constructed wetland plants[J]. Journal of Water Ecology, 2012,33(1):131-138.
    [59] GAGNON V, CHAZARENC F, COMEAU Y, et al. Influence of macrophyte species on microbial density and activity in constructed wetlands[J]. Water Science & Technology, 2006,56(3):249-254.
    doi: 10.2166/wst.2007.510 pmid: 17802862
    [60] DU L, TRINH X, CHEN Q, et al. Enhancement of microbial nitrogen removal pathway by vegetation in integrated vertical-flow constructed wetlands (IVCWs) for treating reclaimed water[J]. Bioresource Technology, 2018,249:644-651.
    doi: 10.1016/j.biortech.2017.10.074 pmid: 29091849
    [61] CHEN D, GU X, ZHU W, et al. Denitrification- and anammox-dominant simultaneous nitrification,anammox and denitrification (SNAD) process in subsurface flow constructed wetlands[J]. Bioresource Technology, 2019,271:298-305.
    doi: 10.1016/j.biortech.2018.09.123 pmid: 30290322
    [62] 张晓一, 陈盛, 查丽娜, 等. 表面流人工湿地和复合型生态浮床处理污水厂尾水的脱氮性能分析[J]. 环境工程, 2019,37(6):46-51.

    ZHANG X Y, CHEN S, et al.ZHA L N. Analysis on nitrogen removal performance in treatment of wastewater treatment plant effluent with surface flow constructer wetland and integrated ecological floating-bed[J]. Environmental Engineering, 2019,37(6):46-51.
    [63] KUSCHK P, WIESSNER A, KAPPELMEYER U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate[J]. Water Research, 2003,37(17):4236-4242.
    doi: 10.1016/S0043-1354(03)00163-5 pmid: 12946906
    [64] RICHARDSON W B, STRAUSS E A, BARTSCH L A, et al. Denitrification in the upper Mississippi River:rates,controls,and contribution to nitrate flux[J]. Canadian Journal of Fisheries & Aquatic Sciences, 2004,61(7):1102-1112.
    [65] XIANG X M, YANG H T, ZHOU J T, et al. Performance of constructed wetland for municipal wastewater tertiary treatment: winter and summer comparison[J]. Environmental Science, 2009,30(3):713-719.
    [66] 张荣新, 刘瑞, 焦玉恩, 等. 低温对湿地填料内微生物生长分布及处理效能的影响研究[J]. 环境污染与防治, 2018,40(4):387-391.

    ZHANG R X, LIU R, JIAO Y E, et al. Effect of low temperature on growth distribution and treatment efficiency of microorganisms in wetland fillers[J]. Environmental Pollution & Control, 2018,40(4):387-391.
    [67] 高冲, 杨肖娥, 向律成, 等. pH和温度对薏苡植物床去除富营养化水中氮磷的影响[J]. 农业环境科学学报, 2008,27(4):1495-1500.

    GAO C, YANG X E, XIANG L C, et al. The effects of pH and temperature on removal of nitrogen and phosphorus from eutrophicated water by Coix lachryma-jobi L.[J]. Journal of Agro-Environment Science, 2008,27(4):1495-1500.
    [68] BEZBARUAH A N, ZHANG T C, pH,redox,and oxygen microprofiles in rhizosphere of bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater[J]. Biotechnology and Bioengineering, 2004,88(1):60-70.
    pmid: 15384055
    [69] SUN G, AUSTIN D. Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands:evidence from a mass balance study[J]. Chemosphere, 2007,68(6):1120-1128.
    doi: 10.1016/j.chemosphere.2007.01.060 pmid: 17349669
    [70] HU Y S, ZHAO Y Q, ZHAO X H, et al. High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland[J]. Environmental Science & Technology, 2012,46(8):4583.
    doi: 10.1021/es204105h pmid: 22424481
    [71] GRADY Jr C P L, DAIGGER G T, LIM H C. Biological wastewater treatment[M]. 2nd Ed.New York:Marcel Dekker,Inc., 1998.
    [72] LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014,64(7):237-254.
    doi: 10.1016/j.watres.2014.06.042
    [73] 王宁宁, 赵阳国, 孙文丽, 等. 溶解氧含量对人工湿地去除污染物效果的影[J]. 中国海洋大学学报(自然科学版), 2018,48(6):24-30.

    WANG N N, ZHAO Y G, SUN W L, et al. Effect of dissolved oxygen on the removal of pollutants in artificial wetland[J]. Journal of Ocean University of China(Natural Science Edition), 2018,48(6):24-30.
    [74] 刘航. 火山岩人工湿地处理三种类型污水的实验研究[D]. 西安:长安大学, 2015: 30-33.
    [75] 丁达江, 杨永哲, 吴雷, 等. 分段进水对深层床潮汐流人工湿地硝化-反硝化性能的影响[J]. 水处理技术, 2016,42(11):104-109.

    DING D J, YANG Y Z, WU L, et al. Effect of step-feeding on nitrification and denitrification characteristics of a deep bed tidal flow constructed wetland system[J]. Water Treatment Technology, 2016,42(11):104-109.
    [76] LIU Y, LIU X H, LI K, et al. Removal of nitrogen from low pollution water by long-term operation of an integrated vertical-flow constructed wetland:performance and mechanism[J]. Science of the Total Environment, 2019,652:977-988.
    doi: 10.1016/j.scitotenv.2018.10.313 pmid: 30380502
    [77] LU S Y, ZHANG P Y, JIN X C, et al. Nitrogen removal from agricultural runoff by full-scale constructed wetland in China[J]. Hydrobiologia, 2009,621(1):115-126.
    doi: 10.1007/s10750-008-9636-1
    [78] 刘臻, 刘涛, 周健, 等. 进水方式对序批式深床人工湿地硝化效能的影响[J]. 安全与环境学报, 2017,17(4):1432-1436.

    LIU Z, LIU T, ZHOU J, et al. Influence of water feeding pattern on the nitrification efficiency of the deep sequencing constructed wetlands[J]. Journal of Safety and Environment, 2017,17(4):1432-1436.
    [79] 程果, 杨永哲, 高壮, 等. 人工湿地-EAS系统在污泥厌氧消化液脱氮中的应用[J]. 工业水处理, 2017,37(12):34-37.

    CHENG G, YANG Y Z, GAO Z, et al. Application of constructed wetlands-EAS system to the nitrogen removal of sludge anaerobic digestive solution[J]. Industrial Water Treatment, 2017,37(12):34-37.
    [80] 周健, 陈飞, 张乐, 等. 进水方式对序批式人工湿地处理效能的影响[J]. 环境工程学报, 2012,6(11):3873-3876.

    ZHOU J, CHEN F, ZHANG L, et al. Influence of flow modes on wastewater treatment of sequencing batch constructed wetlands[J]. Chinese Journal of Environmental Engineering, 2012,6(11):3873-3876.
    [81] 王凌文, 王丹, 范海青, 等. 人工湿地运行工艺优化及对水质净化的影响[J]. 浙江冶金, 2017(4):20-23.
    [82] 李怀, 阎百兴, 程龙, 等. 出水回流对连续式折流潜流人工湿地脱氮除磷效果的影响[J]. 湿地科学, 2016,14(6):860-865.

    LI H, YAN B X, CHENG L, et al. Effect of effluent recirculation on the nitrogen and phosphorus removal in horizontal baffle subsurface flow constructed wetland under effluent reflux[J]. Wetland Science, 2016,14(6):860-865.
    [83] GARCIA-MONTIEL D C, MELILLO J M, STEUDLER P A, et al. Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon[J]. Biology and Fertility of Soils, 2003,38(5):267-272.
    doi: 10.1007/s00374-003-0637-y
    [84] FLEMING-SINGER M S, HORNE A J. Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification[J]. Environmental Science & Technology, 2002,36(6):1231-1237.
    doi: 10.1021/es010967i pmid: 11944674
    [85] 佘丽华, 贺锋, 徐栋, 等. 碳源调控下复合垂直流人工湿地脱氮研究[J]. 环境科学, 2009,30(11):3300-3305.

    SHE L H, HE F, XU D, et al. Nitrogen removal under the condition of carbon source supplement in integrated vertical-flow constructed wetland[J]. Environmental Science, 2009,30(11):3300-3305.
    [86] 谭佑铭, 罗启芳. 不同碳源对固定化反硝化菌脱氮的影响[J]. 卫生研究, 2003,32(2):95-97.
    pmid: 12792992

    TAN Y M, LUO Q F. Study on denitrification using different carbon sources[J]. Journal of Hygiene Research, 2003,32(2):95-97. pmid: 12792992
    [87] 肖蕾, 贺锋, 梁雪, 等. 不同碳源添加量对垂直流人工湿地污水处理效果的影响[J]. 环境工程学报, 2013,7(6):2074-2080.

    XIAO L, HE F, LIANG X, et al. Impact of solid carbon sources supplement amount on performance of wastewater treatment effect in vertical-flow constructed wetland[J]. Chinese Journal of Environmental Engineering, 2013,7(6):2074-2080.
    [88] 赵秋菊, 陈昱奇. 潮汐流人工湿地不同位置脱氮效果及外加碳源对其影响[J]. 供水技术, 2015,9(4):32-37.

    ZHAO Q J, CHEN Y Q. Effects of denitrification in different points and external carbon source for tide and current constructed wetland[J]. Water Technology, 2015,9(4):32-37.
    [89] 常洋, 王彤, 王海燕, 等. 芦苇碳源-表面流人工湿地对农田退水脱氮的长期效能研究[J]. 环境工程技术学报, 2016,6(5):453-461.
    doi: 10.3969/j.issn.1674-991X.2016.05.067

    CHANG Y, WANG T, WANG H Y, et al. The long-term nitrogen removal efficiency from agricultural runoff in Phragmites australis packed surface flow constructed wetland[J]. Journal of Environmental Engineering Technology, 2016,6(5):453-461. doi: 10.3969/j.issn.1674-991X.2016.05.067
    [90] 晋凯迪, 于鲁冀, 陈涛, 等. 植物碳源调控对人工湿地脱氮效果的影响[J]. 环境工程学报, 2016,10(10):5611-5616.

    JIN K D, YU L J, CHEN T, et al. Effect of adding plant carbon on nitrogen removal in constructed wetland[J]. Chinese Journal of Environmental Engineering, 2016,10(10):5611-5616.
    [91] ZHAO Y F, SONG X S, CAO X, et al. Modified solid carbon sources with nitrate adsorption capability combined with nZVI improve the denitrification performance of constructed wetlands[J/OL]. Bioresource Technology, 2019[2019-09-30].DOI: 10.1016/j.biortech.2019.122189.
    [92] LI L, YAN G K, WANG H Y, et al. Denitrification and microbial community in MBBR using A. donax as carbon source and biofilm carriers for reverse osmosis concentrate treatment[J]. Journal of Environmental Sciences, 2019,84:133-143.
    doi: 10.1016/j.jes.2019.04.030
    [93] SHEN Z Q, ZHOU Y X, LIU J, et al. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland[J]. Bioresource Technology, 2015,175:239-244.
    doi: 10.1016/j.biortech.2014.10.006 pmid: 25459828
    [94] SHEN Z Q, ZHOU Y E, WANG J L. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal[J]. Bioresource Technology, 2013,131:33-39.
    doi: 10.1016/j.biortech.2012.12.169 pmid: 23321665
    [95] 张兰河, 刘丽丽, 仇天雷, 等. 以聚羟基丁酸戊酸共聚酯为碳源去除循环水养殖系统的硝酸盐及生物膜中微生物群落动态[J]. 微生物学报, 2014,54(9):1053-1062.
    pmid: 25522594

    ZHANG L H, LIU L L, QIU T L, et al. Nitrate removal from recirculating aquaculture system using polyhydroxybutyrate-co-hydroxyvalerate as carbon source[J]. Acta Microbiologica Sinica, 2014,54(9):1053-1062. pmid: 25522594
    [96] MAIDUL I C, JOEL S, MARIA H, et al. Importance of plant species for nitrogen removal using constructed floating wetlands in a cold climate[J]. Ecological Engineering, 2019,138:126-132.
    doi: 10.1016/j.ecoleng.2019.07.012
    [97] 郝明旭, 霍莉莉, 吴珊珊. 人工湿地植物水体净化效能研究进展[J]. 环境工程, 2017,35(8):5-10.

    HAO M X, HUO L L, WU S S. Research progress on water purification of plants in constructed wetland[J]. Environmental Engineering, 2017,35(8):5-10.
    [98] 岑璐瑶, 陈滢, 张进, 等. 种植不同植物的人工湿地深度处理城镇污水处理厂尾水的中试研究[J]. 湖泊科学, 2019,31(2):365-374.
    doi: 10.18307/2019.0206

    CEN L Y, CHEN Y, ZHANG J, et al. Pilot-scale study on advanced treatment of tail water of urban sewage treatment plant by constructed wetlands with different plants[J]. Journal of Lake Sciences, 2019,31(2):365-374. doi: 10.18307/2019.0206
    [99] 肖洋, 范晶. 哈尔滨市典型湿地植物净污能力研究[J]. 水土保持学报, 2014,28(3):295-299.

    XIAO Y, FAN J. Study on purification pollutants ability of typical wetland plants in Harbin[J]. Journal of Soil and Water Conservation, 2014,28(3):295-299.
    [100] 李淑英, 周元清, 胡承, 等. 水生植物组合后根际微生物及水净化研究[J]. 环境科学与技术, 2010,33(3):148-153.

    LI S Y, ZHOU Y Q, HU C, et al. Water purification of rhizosphere microorgaism in mosaic community of macrophytes[J]. Environmental Science & Technology, 2010,33(3):148-153.
    [101] 张建民, 范欣柯, 孙显春, 等. 植物配置对人工湿地污水处理效果的影响[J]. 湖北农业科学, 2016,55(11):2748-2750.

    ZHANG J M, FAN X K, SUN X C, et al. Sewage purification effect of plant combination in constructed wetland[J]. Hubei Agricultural Sciences, 2016,55(11):2748-2750.
    [102] CHANDRA R, BHARAGAVA R N, KAPLEY A, et al. Characterization of Phragmites cummunis rhizosphere bacterial communities and metabolic products during the two stage sequential treatment of post methanated distillery effluent by bacteria and wetland plants[J]. Bioresource Technology, 2012,103(1):78-86.
    doi: 10.1016/j.biortech.2011.09.132
    [103] 詹建益. 不同植物配置的人工湿地处理厨房废水的探讨[J]. 浙江农业科学, 2015(3):307-308.

    ZHAN J Y. Discussion on treatment of kitchen wastewater with constructed wetland with different plant configuration[J]. Journal of Zhejiang Agricultural Sciences, 2015(3):307-308.
    [104] 郝君, 陈永华, 付朝辉, 等. 人工湿地处理不同废水工艺与植物优化配置研究[J]. 环境科学与管理, 2013,38(4):30-35.

    HAO J, CHEN Y H, FU C H, et al. Study on technology and plant disposition of constructed wetlands treated with different wastewater[J]. Environmental Science and Management, 2013,38(4):30-35.
    [105] 张丽, 韩乔, 司马卫平. 人工湿地污水处理技术综述[J]. 山西建筑, 2007,33(28):204-205.

    ZHANG L, HAN Q, SIMA W P. Statement of artificial wet land polluted water processing skill[J]. Shanxi Architecture, 2007,33(28):204-205.
    [106] WU H, FAN J, ZHANG J, et al. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands:impact of influent strengths[J]. Bioresource Technology, 2015,176:163-168.
    doi: 10.1016/j.biortech.2014.11.041 pmid: 25460998
    [107] 黄垚洇, 石雷. 聚丙烯球强化表面流人工湿地处理模拟湖泊水脱氮作用[J]. 暨南大学学报(自然科学与医学版), 2018,39(1):47-54.

    HUANG Y Y, SHI L. Enhancement of nitrogen removal in pilot-scale free water surface constructed wetlands using polypropylene pellets to purify simulated lake water[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2018,39(1):47-54.
    [108] DENG C R, HUANG L, LIANG Y K, et al. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands:microbial community structure and metabolite characteristics[J/OL]. Science of the Total Environment,2019(2019-07-30)[2019-09-14]. https://doi.org/10.1016/j.scitotenv. 2019. 133687.
    [109] 刘学燕, 侯琮语, 李德生, 等. 基于铁碳物化-生物耦合法的新型湿地填料研究[J]. 人民黄河, 2018,40(11):96-100.

    LIU X Y, HOU C Y, LI D S, et al. Studies on new wetland substrate by physicochemical and biological coupling process based on iron-carbon internal electrolysis[J]. Yellow River, 2018,40(11):96-100.
    [110] 曾丽璇. 新型人工湿地生态填料净化生活污水的试验研究[J]. 环境污染与防治, 2012,34(9):24-27.

    ZENG L X. Experimental study on purification of domestic sewage by new constructed wetland ecological filler[J]. Environmental Pollution & Control, 2012,34(9):24-27.
    [111] 冀泽华, 冯冲凌, 吴晓芙, 等. 人工湿地污水处理系统填料及其净化机理研究进展[J]. 生态学杂志, 2016,35(8):2234-2243.

    JI Z H, FENG C L, WU X F, et al. Research progress on filler application and purification mechanisms in constructed wetland wastewater treatment system[J]. Chinese Journal of Ecology, 2016,35(8):2234-2243.
    [112] WU P, LU S J, XU L Z, et al. Efficiency and mechanism of nitrogen and phosphorus removal in modified zeolite wetland[J]. Environmental Science, 2017,38(2):580.
    [113] 张瑞斌, 奚道国, 王乐阳, 等. A/O+铝污泥填料人工湿地组合工艺处理农村生活污水的效果[J]. 环境工程技术学报, 2019,9(2):145-150.

    ZHANG R B, XI D G, WANG L Y, et al. Effect of A/O + aluminum sludge filled constructed wetland combined process on rural domestic sewage[J]. Journal of Environmental Engineering Technology, 2019,9(2):145-150.
    [114] LIU H, HU Z, ZHANG J, et al. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands:a review[J]. Bioresource Technology, 2016,214:797-805.
    doi: 10.1016/j.biortech.2016.05.003 pmid: 27177713
    [115] YANG Z, YANG L, WEI C, et al. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration[J]. Bioresource Technology, 2018,248:98-103.
    doi: 10.1016/j.biortech.2017.07.188 pmid: 28941666
    [116] 黄雪玲, 刘慧敏, 何启帆, 等. 低温条件下不同曝气方式对硫自养湿地脱氮效能的影响[J]. 环境工程学报, 2019,13(11):2619-2628.

    HUANG X L, LIU H M, HE Q F, et al. Effect of different aeration modes at low temperature on nitrogen removal[J]. Chinese Journal of Environmental Engineering, 2019,13(11):2619-2628.
    [117] 李松, 王为东, 强志民, 等. 自动增氧型垂直流人工湿地处理农村生活污水试验研究[J]. 农业环境科学学报, 2010,29(8):1566-1570.

    LI S, WANG W D, QIANG Z M, et al. Self-aeration vertical flow constructed wetland for the treatment of rural domestic wastewater[J]. Journal of Agro-Environment Science, 2010,29(8):1566-1570.
    [118] WU H, FAN J, ZHANG J, et al. Optimization of organics and nitrogen removal in intermittently aerated vertical flow constructed wetlands:effects of aeration time and aeration rate[J]. International Biodeterioration & Biodegradation, 2016,113:139-145.
    [119] 黄翔峰, 谢良林, 陆丽君, 等. 人工湿地在冬季低温地区的应用研究进展[J]. 环境污染与防治, 2008,30(11):84-89.

    HUANG X F, XIE L L, LU L J, et al. Literature review of winter performance of the constructed wetlands located in low-temperate areas[J]. Environmental Pollution & Control, 2008,30(11):84-89.
    [120] 孙玉龙. 人工湿地冬季运行优化措施探析[J]. 科技创业月刊, 2017,30(14):117-119.

    SUN Y L. The explore of constructed wetlands optimization measures in winter[J]. Pioneering with Science & Technology Monthly, 2017,30(14):117-119.
    [121] 魏巍, 徐元崇, 杨国英, 等. 利用有机覆盖物处理的人工湿地外排焦化废水研究[J]. 水土保持通报, 2017,37(1):17-22.

    WEI W, XU Y C, YANG G Y, et al. A study on treatment of discharged coking wastewater by constructed wetlands using organic mulches[J]. Bulletin of Soil and Water Conservation, 2017,37(1):17-22.
    [122] 于鲁冀, 柏义生, 陈涛, 等. 保温措施对潜流人工湿地运行效果的影响[J]. 水处理技术, 2016(6):102-105.

    YU L J, BO Y S, CHEN T, et al. Effect of insulation measures on constructed wetland operating results[J]. Water Treatment Technology, 2016(6):102-105.
    [123] 申欢, 胡洪营, 潘永宝. 潜流式人工湿地冬季运行的强化措施研究[J]. 中国给水排水, 2007,23(5):44-46.

    SHEN H, HU H Y, PAN Y B. Study on enhanced measures for operation of subsurface flow constructed wetlands in winter[J]. China Water & Wastewater, 2007,23(5):44-46.
    [124] 谭月臣, 姜冰冰, 洪剑明. 北方地区潜流人工湿地冬季保温措施的研究[J]. 环境科学学报, 2012,32(7):1653-1661.

    TAN Y C, JIANG B B, HONG J M. The study of wintertime heat preservation measures in subsurface flow constructed wetland in northern China[J]. Acta Scientiae Circumstantiae, 2012,32(7):1653-1661.
    [125] ZHANG L, MU L, XIONG Y, et al. The development of a natural heating technology for constructed wetlands in cold climates[J]. Ecological Engineering, 2015,75:51-60.
    doi: 10.1016/j.ecoleng.2014.11.025
    [126] ARTS P A M, ROBERTSON L A, KUENEN J G. Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures[J]. FEMS Microbiology Ecology, 1995,18(4):305-315.
    doi: 10.1111/fem.1995.18.issue-4
    [127] 王莹, 周巧红, 梁威, 等. 人工湿地高效好氧反硝化菌的分离鉴定及反硝化特性研究[J]. 农业环境科学学报, 2010,29(6):1193-1198.

    WANG Y, ZHOU Q H, LIANG W, et al. Isolation and identification of a high-efficiency aerobic denitrifier and its denitrifying characteristic in constructed wetland[J]. Journal of Agro-Environment Science, 2010,29(6):1193-1198.
    [128] 魏阳, 侯彬, 陈琛, 等. 驯化高效脱氮菌增强模拟人工湿地处理生活污水的效果[J]. 科学技术与工程, 2019,19(17):363-368.

    WEI Y, HOU B, CHEN C, et al. Effect of high-efficiency nitrogen removal bacteria on domestic sewage treatment by constructed wetland[J]. Science Technology and Engineering, 2019,19(17):363-368.
    [129] 王磊, 汪苹, 刘健楠, 等. 固定异养硝化好氧反硝化菌脱氮能力的研究[J]. 食品科学技术学报, 2010,28(1):18-23.

    WANG L, WANG P, LIU J N, et al. Study on denitrification characteristics of an immobilization heterotrophic nitrification-aerobic denitrifier[J]. Journal of Food Science and Technology, 2010,28(1):18-23.
    [130] 苏俊峰, 黄廷林, 刘燕, 等. 异养型同步硝化反硝化处理微污染水源水[J]. 环境科学与技术, 2010,33(3):141-143.

    SU J F, HUANG T L, LIU Y, et al. Simultaneous nitrification and denitrification for treating slightly polluted water with heterotrophic nitrification bacteria and aerobic denitrifiers[J]. Environmental Science & Technology, 2010,33(3):141-143.
    [131] 林燕, 张焕杰, 刘曦, 等. 固定反硝化菌强化人工湿地处理低污染水研究[J]. 农业环境科学学报, 2016,35(11):2154-2162.

    LIN Y, ZHANG H J, LIU X, et al. Performance of immobilized denitrifying bacteria in constructed wetland for slightly-polluted water treatment[J]. Journal of Agro-Environment Science, 2016,35(11):2154-2162.
  • 加载中
计量
  • 文章访问数:  921
  • HTML全文浏览量:  238
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 刊出日期:  2020-07-20

目录

    /

    返回文章
    返回