留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芦竹-砾石A/O生物滤池对农村污水强化脱氮效能的研究

赵远哲 董伟羊 王海燕 储昭升 闫国凯 常洋 王欢 凌宇 李丛宇

赵远哲, 董伟羊, 王海燕, 储昭升, 闫国凯, 常洋, 王欢, 凌宇, 李丛宇. 芦竹-砾石A/O生物滤池对农村污水强化脱氮效能的研究[J]. 环境工程技术学报, 2020, 10(3): 424-432. doi: 10.12153/j.issn.1674-991X.20190153
引用本文: 赵远哲, 董伟羊, 王海燕, 储昭升, 闫国凯, 常洋, 王欢, 凌宇, 李丛宇. 芦竹-砾石A/O生物滤池对农村污水强化脱氮效能的研究[J]. 环境工程技术学报, 2020, 10(3): 424-432. doi: 10.12153/j.issn.1674-991X.20190153
ZHAO Yuanzhe, DONG Weiyang, WANG Haiyan, CHU Zhaosheng, YAN Guokai, CHANG Yang, WANG Huan, LING Yu, LI Congyu. Study on advanced nitrogen removal efficiency of Arundo donax-gravel A/O biofilter for rural sewage treatment[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 424-432. doi: 10.12153/j.issn.1674-991X.20190153
Citation: ZHAO Yuanzhe, DONG Weiyang, WANG Haiyan, CHU Zhaosheng, YAN Guokai, CHANG Yang, WANG Huan, LING Yu, LI Congyu. Study on advanced nitrogen removal efficiency of Arundo donax-gravel A/O biofilter for rural sewage treatment[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 424-432. doi: 10.12153/j.issn.1674-991X.20190153

芦竹-砾石A/O生物滤池对农村污水强化脱氮效能的研究

doi: 10.12153/j.issn.1674-991X.20190153
详细信息
    作者简介:

    赵远哲(1995—),男,硕士研究生,研究方向为水污染控制工程,1174833645@qq.com

    通讯作者:

    王海燕 E-mail: wanghy@craes.org.cn

  • 中图分类号: X703

Study on advanced nitrogen removal efficiency of Arundo donax-gravel A/O biofilter for rural sewage treatment

More Information
    Corresponding author: WANG Haiyan E-mail: wanghy@craes.org.cn
  • 摘要: 雨污混流农村污水具有低污染、低碳氮比的特性,由于碳源缺乏导致其采用生物法处理时总氮(TN)难以去除,无法达标排放。采用芦竹碎段作为缺氧/好氧(A/O)生物滤池(2#)缺氧段填料和碳源强化对农村污水脱氮,以砾石A/O生物滤池(1#)作为对照组,研究芦竹对氮的强化去除作用,并采用扫描电镜(SEM)和实时荧光定量聚合酶链式反应(qPCR)分析生物滤池中的脱氮微生物群落。结果表明:当进水CODCr NH 4 + -N、TN和 PO 4 3 - -P浓度分别为(79.47±14.21)、(34.49±2.08)、(34.73±3.87)和(2.38±0.46)mg/L,水力停留时间为10 h时,1#和2#生物滤池对其去除率分别为88%±7%和86%±6%、90%±2%和97%±7%、38%±13%和65%±9%、27%±13%和40%±18%。芦竹作为缺氧段填料能显著增强A/O滤池对 NH 4 + -N、TN和 PO 4 3 - -P的去除效果。1#和2#生物滤池缺氧段填料上的微生物均以短杆菌为主;2#生物滤池缺氧段中微生物反硝化脱氮和厌氧氨氧化(ANAMMOX)功能基因丰度高于1#生物滤池。

     

  • [1] 王丽丽, 赵林, 谭欣 , 等. 不同碳源及其碳氮比对反硝化过程的影响[J]. 环境保护科学, 2004,30(1):15-18.

    WANG L L, ZHAO L, TAN X , et al. Influence of different carbon source and ratio of carbon and nitrogen for water denitrification[J]. Environmental Protection Science, 2004,30(1):15-18.
    [2] SHAO M Y, GUO L, SHE Z L , et al. Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source[J]. Environmental Science and Pollution Research, 2019,26(5):4633-4644.
    doi: 10.1007/s11356-018-3944-4 pmid: 30565112
    [3] GARCIA-MONTIEL D C, MELILLO J M, STEUDLER P A , et al. Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon[J]. Biology & Fertility of Soils, 2003,38(5):267-272.
    [4] FLEMING-SINGER M S, HORNE A I . Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification[J]. Environmental Science & Technology, 2002,36(6):1231.
    doi: 10.1021/es010967i pmid: 11944674
    [5] 佘丽华, 贺锋, 徐栋 , 等. 碳源调控下复合垂直流人工湿地脱氮研究[J]. 环境科学, 2009,30(11):3300-3305.
    pmid: 20063744

    SHE L H, HE F, XU D , et al. Nitrogen removal under the condition of carbon source supplement in integrated vertical-flow constructed wetland[J]. Environmental Science, 2009,30(11):3300-3305. pmid: 20063744
    [6] HUME N P, FLEMING M S, HORNE A J . Plant carbohydrate limitation on nitrate reduction in wetland microcosms[J]. Water Research, 2002,36(3):577-584.
    doi: 10.1016/s0043-1354(01)00276-7 pmid: 11827319
    [7] YUE W, YI C, NAN Z , et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2010,101(19):7286-7292.
    doi: 10.1016/j.biortech.2010.04.068 pmid: 20478703
    [8] 刘玉环, 阮榕生, 蒋启海 , 等. 木质纤维素及其组分转化木材胶粘剂的发展趋势[J]. 世界林业研究, 2006,19(5):49-53.

    LIU Y H, RUAN R S, JIANG Q H , et al. Wood adhesives derived from lignocellulosics:history and future[J]. World Forestry Research, 2006,19(5):49-53.
    [9] BOUSSAID F, MARTIN G, MORVAN J , et al. Denitrification in-situ of groundwaters with solid carbon matter[J]. Environmental Science & Technology Letters, 1988,9(8):803-816.
    doi: 10.1021/es60107a602
    [10] SOARES M I M, ABELIOVICH A . Wheat straw as substrate for water denitrification[J]. Water Research, 1998,32(12):3790-3794.
    [11] JIN Z F, CHEN Y X, NORIO O . Denitrification of groundwater using cotton as energy source[J]. Water Science & Technology, 1996,34(1/2):379-385.
    doi: 10.1016/j.biotechadv.2016.07.001 pmid: 27396522
    [12] VOLOKITA M, BELKIN S, ABELIOVICH A , et al. Biological denitrification of drinking water using newspaper[J]. Water Research, 1996,30(4):965-971.
    doi: 10.1016/0043-1354(95)00242-1
    [13] SCHIPPER L A, VOJVODIĆ-VUKOVIĆ M . Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust [J]. Ecological Engineering, 2000,14(3):269-278.
    doi: 10.1016/S0925-8574(99)00002-6
    [14] SALILING W J B, WESTERMAN P W, LOSORDO T M . Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations[J]. Aquacultural Engineering, 2007,37(3):222-233.
    doi: 10.1016/j.aquaeng.2007.06.003
    [15] 丁绍兰, 封香香, 谢林花 . 沸石-核桃壳曝气生物滤池去除废水中氨氮的研究[J]. 工业水处理, 2017,37(5):45-49.

    DING S L, FENG X X, XIE L H . Research on the removal of ammonia nitrogen from wastewater by zeolite and walnut combined fillers of the biological aerated filter[J]. Industrial Water Treatment, 2017,37(5):45-49.
    [16] LI L, YAN G K, WANG H Y , et al. Denitrification and microbial community in MBBR using A.donax as carbon source and biofilm carriers for reverse osmosis concentrate treatment[J]. Journal of Environmental Sciences, 2019,84:133-143.
    doi: 10.1016/j.jes.2019.04.030 pmid: 31284905
    [17] 丁绍兰, 王娟娟, 谢林花 . 核桃壳、陶粒曝气生物滤池反冲洗特性的研究[J]. 环境污染与防治, 2017,39(8):841-844.

    DING S L, WANG J J, XIE L H . Walnut shell and ceramsite backwashing performance investigation in biological aerated filters[J]. Environmental Pollution and Control, 2017,39(8):841-844.
    [18] 谢家仪, 董光军, 刘振英 . 扫描电镜的微生物样品制备方法[J]. 电子显微学报, 2005,24(4):440.

    XIE J Y, DONG G J, LIU Z Y . Microbial sample preparation methods by scanning electron microscope[J]. Journal of Chinese Electron Microscopy Society, 2005,24(4):440.
    [19] 赵文莉, 郝瑞霞, 李斌 , 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014,35(3):987-994.

    ZHAO W L, HAO R X, LI B , et al. Effects of pretreatment methods on corncob as carbon source for denitrification[J]. Environmental Science, 2014,35(3):987-994.
    [20] MOSIER N, WYMAN C, DALE B , et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005,96(6):673-686.
    doi: 10.1016/j.biortech.2004.06.025 pmid: 15588770
    [21] 李晓崴, 贾亚红, 李冰 , 等. 人工湿地植物缓释碳源的预处理方式及释碳性能研究[J]. 水处理技术, 2013,39(12):46-48.

    LI X W, JIA Y H, LI B , et al. Research on pretreatment methods and carbon releasing property of constructed wetland plant as slow-releasing carbon source[J]. Water Treatment Technology, 2013,39(12):46-48.
    [22] 熊家晴, 孙建民, 郑于聪 , 等. 植物固体碳源添加对人工湿地脱氮效果的影响[J]. 工业水处理, 2018,38(9):41-44.

    XIONG J Q, SUN J M, ZHENG Y C , et al. Influences of solid plant carbon source addition on the denitrification effect in constructed wetland[J]. Industrial Water Treatment, 2018,38(9):41-44.
    [23] 钟胜强, 杨扬, 陶然 , 等. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014,8(5):1817-1824.

    ZHONG S Q, YANG Y, TAO R , et al. Carbon releasing characteristics and denitrification effects of five plant materials[J]. Chinese Journal of Environmental Engineering, 2014,8(5):1817-1824.
    [24] 邵留, 徐祖信, 王晟 , 等. 新型反硝化固体碳源释碳性能研究[J]. 环境科学, 2011,32(8):2323-2327.

    SHAO L, XU Z X, WANG S , et al. Performance of new solid carbon source materials for denitrification[J]. Environmental Science, 2011,32(8):2323-2327.
    [25] 杨玉婷, 何小娟, 苏跃龙 , 等. 外加植物碳源强化人工湿地脱氮的研究进展[J]. 水处理技术, 2015,41(5):1-4.

    YANG Y T, HE X J, SU Y L , et al. Research progress in the enhancement of nitrogen removal using plant biomass as extra carbon source in constructed wetlands[J]. Water Treatment technology, 2015,41(5):1-4.
    [26] 向衡, 韩芸, 刘琳 , 等. 用于河道水反硝化脱氮补充碳源选择研究[J]. 水处理技术, 2013,39(5):64-68.

    XIANG H, HAN Y, LIU L , et al. Selection of carbon sources for biological denitrification of riverway water[J]. Water Treatment Technology, 2013,39(5):64-68.
    [27] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838—2002[S/OL]. (2019-10-10)[2019-04-06]. http://www.shqp.gov.cn/env/hjbz/20191010/566500.html.
    [28] 刘少敏, 储磊, 朱敬林 . 固定化硝化细菌去除生活污水中的氨氮[J]. 环境工程学报, 2014,8(10):4261-4266.

    LIU S M, CHU L, ZHU J L . Removal of ammonia nitrogen from sewage by immobilization nitrification bacteria[J]. Chinese Journal of Environmental Engineering, 2014,8(10):4261-4266.
    [29] 国家环境保护总局, 国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准:GB 18918—2002[S/OL]. (2018-10-27)[2019-04-06]. https://wenku.baidu.com/view/e77081d564ce0508763231126edb6f1aff00713a.html.
    [30] 余波, 江传春, 陈婷婷 , 等. 新型一体式生物流化床-生物滤池处理低C/N废水研究[J]. 环境科学与技术, 2014(4):171-174.

    YU B, JIANG C C, CHEN T T , et al. Study on a novel integrated biological fluidized-bed-biofilter for treatment of wastewater of low C/N[J]. Environmental Science & Technology, 2014(4):171-174.
    [31] 孙雅丽, 张国臣, 阎中 , 等. 以腐朽木为碳源去除废水中硝酸盐氮的研究[J]. 环境科学, 2010,31(6):1494-1498.

    SUN Y L, ZHANG G C, YAN Z , et al. Removing nitrate-nitrogen from wastewater using rotten wood as carbon source[J]. Environmental Science, 2010,31(6):1494-1498.
    [32] SHANABLEH A, HIJAZI A . Treatment of simulated aquaculture water using biofilters subjected to aeration/non-aeration cycles[J]. Water Science & Technology, 1998,38(8/9):223-231.
    [33] MORGENROTH E, WILDERER P A . Controlled biomass removal:the key parameter to achieve enhanced biological phosphorus removal in biofilm systems[J]. Water Science & Technology, 1999,39(7):33-40.
    [34] FERRERA I, SÁNCHEZ O . Insights into microbial diversity in wastewater treatment systems:how far have we come[J]. Biotechnology Advances, 2016,34(5):790-802.
    doi: 10.1016/j.biotechadv.2016.04.003 pmid: 27071535
    [35] KIM J M, LEE H J, LEE D S , et al. Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis”clades in sludge subjected to enhanced biological phosphorus removal[J]. Applied & Environmental Microbiology, 2013,79(6):1969-1979.
    doi: 10.1128/AEM.03464-12 pmid: 23335771
    [36] 赵玉华, 韩敏 . 有机物含量及碳磷比对生物接触氧化法除磷效果的影响[J]. 辽宁化工, 2008,37(1):4-7.

    ZHAO Y H, HAN M . Influence of CODCr on phosphorous removal of batch biological contact oxidation reactor[J]. Liaoning Chemical Industry, 2008,37(1):4-7.
    [37] 方晶晶, 马传明, 刘存富 . 反硝化细菌研究进展[J]. 环境科学与技术, 2010(增刊1):206-210.

    FANG J J, MA C M, LIU C F . The advance of study on denitrifying bacteria[J]. Environmental Science & Technology, 2010(Suppl 1):206-210.
    [38] 刘秀红, 甘一萍, 杨庆 , 等. 碳源对反硝化生物滤池系统运行及微生物种群影响[J]. 水处理技术, 2013,39(11):36-40.

    LIU X H, GAN Y P, YANG Q , et al. Effects of carbon source types on the operation and nitrifying microbial community of denitrifying biofilter for advanced nitrogen removal[J]. Water Treatment Technology, 2013,39(11):36-40.
    [39] SHEN Z, ZHOU Y, HU J , et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support[J]. Journal of Hazardous Materials, 2013, 250/251(8):431-438.
    [40] 李莉, 闫国凯, 王海燕 , 等. 底物浓度对反硝化MBBR处理反渗透浓水脱氮效能及脱氮基因的影响[J]. 环境工程技术学报, 2019,9(4):375-383.

    LI L, YAN G K, WANG H Y , et al. Influence of substrate concentration on the nitrogen removal and relative genes of denitrifying MBBR for the treatment of reverse osmosis concentrate[J]. Journal of Environmental Engineering Technology, 2019,9(4):375-383.
  • 加载中
计量
  • 文章访问数:  557
  • HTML全文浏览量:  208
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-01
  • 刊出日期:  2020-05-20

目录

    /

    返回文章
    返回