-
摘要: 我国碳化硅(SiC)产能世界第一,但因冶炼方式粗放、行业排放标准缺失等原因,废气大量无组织排放,造成大气环境严重污染。使用半密闭收集装置,将废气由无组织排放变为有组织排放,继而研究其污染因子及排放规律。通过现场实测、标准比对等方法,确定污染因子为SO2、NOx、PM 3种常规污染因子和CO 1种特征污染因子。结果表明,SO2、NOx、PM的日排放量变化规律与冶炼温度存在趋同性;SO2、NOx、PM的日排放量在恒温阶段(高温段)最高,分别达439.00、59.04、38.81 kg/d。CO因同时受主副反应竞争性影响,其日排放量在升温和降温阶段较高,达6 488.37 kg/d;在恒温阶段较低,为1 203.70 kg/d。根据污染物日排放量,通过变频控制风机风量和吸收液流速,使之适配不同冶炼时期的污染物浓度,从而降低污染治理成本。Abstract: China’s silicon carbide (SiC) production capacity ranks first in the world. However, due to the extensive unchanged smelting methods and the lack of industrial emission standards, a large amount of unorganized waste gas was exhausted, causing serious air pollution. The semi-closed collection device was used to convert the unorganized exhaust gas into organized emissions, which could be used to study its pollution factors and emission rules. Through on-site test, standard comparison and other methods, the main pollution factors in the industry were determined as three conventional pollution factors (SO2, NOx, PM) and one characteristic pollution factor (CO). The result of research showed that the daily emission variation of SO2, NOx and PM was similar to that of the smelting temperature. The daily emissions of SO2, NOx and PM was 439.00, 59.04 and 38.81 kg/d, respectively, in the constant temperature stage (high temperature stage). However, CO was affected by the competitive effects of main and side reactions at the same time, and thus its daily emission was higher in the heating and cooling stages, reaching 6 488.37 kg/d, but lower in the constant temperature stage, reaching 1 203.70 kg/d. According to the change of daily emission, the wind volume of fan and the velocity of absorption liquid could be controlled by frequency conversion to adapt to the pollution concentrations in different smelting periods, so as to reduce the cost of pollution control.
-
Key words:
- silicon carbide(SiC) /
- exhaust gas /
- emission factors /
- emission rule
-
[1] 李禹平 . 中国碳化硅生产企业现状[N]. 中国建材报, 2013-09-24(8). [2] 王家鹏, 贺东葛, 赵婉云 . 碳化硅材料研究现状与应用展望[J]. 电子工业专用设备, 2018,47(4):23-26.WANG J P, HE D G, ZHAO W Y . Research status and application prospect of silicon carbide materials[J]. Equipment for Electronic Products Manufacturing, 2018,47(4):23-26. [3] ZHANG Y, CHEN J F, LI N , et al. The microstructure evolution and mechanical properties of MgO-C refractories with recycling Si/SiC solid waste from photovoltaic industry[J]. Ceramics International, 2018,44(14):16435-16442.
doi: 10.1016/j.ceramint.2018.06.057[4] 陆田 . 基于SiC的光伏并网逆变器的研究[D]. 武汉:湖北工业大学, 2017. [5] 刘巧沐, 黄顺洲, 何爱杰 . 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019,47(2):1-10.LIU Q M, HUANG S Z, HE A J . Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019,47(2):1-10. [6] 碳化硅基氮化镓技术将继续推动军用雷达、电子战和通信系统的发展商业领域应用成为其新的增长点[J]. 半导体信息, 2017(6):2-5. [7] 曹峻 . 碳化硅半导体技术和市场应用综述[J]. 集成电路应用, 2018,35(8):5-9.CAO J . Summary of silicon carbide semiconductor technology and market application[J]. Application of IC, 2018,35(8):5-9. [8] 王立, 贾淑文 . 碳化硅半导体在功率器件领域的应用探析[J]. 数字通信世界, 2018(4):188.WANG L, JIA S W . Analysis of the application of silicon carbide semiconductor in the field of power devices[J]. Digital Communication World, 2018(4):188. [9] KRYSTIAN K, MARIUSZ S, ANDRZEJ T , et al. Influence of atomic layer deposition temperature on the electrical properties of Al/ZrO2/SiO2/4H-SiC metal-oxide semiconductor structures[J]. Physica Status Solidi A, 2018,215(13):1700882. [10] ROCCAFORTE F, FIORENZA P, GRECO G , et al. Emerging trends in wide band gap semiconductors(SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2017,187:66-77. [11] LATHA H K E, UDAYAKUMAR A, SIDDESWARA-PRASAD V . Effect of nitrogen doping on the electrical properties of 3C-SiC thin films for high-temperature sensors applications[J]. Acta Metallurgica Sinica(English Letters), 2014,27(1):168-174. [12] SOMAYEH A, ALI R, GHASEM H M . Ni-B/SiC nanocomposite coating obtained by pulse plating and evaluation of its electrochemistry and mechanical properties[J]. Surface Engineering, 2019,35(10):861-872.
doi: 10.1080/02670844.2018.1498823[13] FALLAH-ARANI H, ISAFI S, TABRIZIAN P , et al. A novel gel-cast SiC with potential application in turbine hot section:investigation of the rheological behavior and mechanical properties[J]. Ceramics International, 2019,45(13):15996-16001.
doi: 10.1016/j.ceramint.2019.05.110[14] KUMAR R A, KRISHNAKUMAR T S . Casting and characterization of Al6063/SiC nano composites produced using stir casting method[J]. Materials Today:Proceedings, 2018,5(11):23853-23862.
doi: 10.1016/j.matpr.2018.10.177[15] 魏汝斌, 李锋, 梁勇芳 , 等. 碳化硅抗弹陶瓷的研究进展及在装甲防护领域的应用[J]. 兵器材料科学与工程, 2014,37(6):145-148.WEI R B, LI F, LIANG Y F , et al. Research progress in bulletproof SiC ceramic and its applications in armor protection field[J]. Ordnance Material Science and Engineering, 2014,37(6):145-148. [16] 詹海鹃, 石晓燕, 黄鑫 , 等. 高比表面积有序介孔Ni/SiC催化CH4-CO2重整反应[J]. 燃料化学学报, 2019,47(8):942-948.
doi: 10.1016/S1872-5813(19)30039-8ZHAN H J, SHI X Y, HUANG X , et al. Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology, 2019,47(8):942-948. doi: 10.1016/S1872-5813(19)30039-8[17] 刘巧沐, 许建锋, 刘佳 . 碳化硅陶瓷基复合材料基体和涂层改性研究进展[J]. 硅酸盐学报, 2018,46(12):1700-1706.LIU Q M, XU J F, LIU J . Development on anti-oxidation modification of CMC-SiC composites matrix and coating[J]. Journal of the Chinese Ceramic Society, 2018,46(12):1700-1706. [18] 孙绍基, 梁爽 . 碳化硅冶炼炉发展及改进[J]. 科技信息, 2011(28):325.SUN S J, LIANG S . Development and improvement of silicon carbide smelting furnace[J]. Science & Technology Information, 2011(28):325. [19] 杜超 . 天祝县复杂地形条件下大型碳化硅面源大气环境影响研究[D]. 兰州:兰州大学, 2019. [20] 焦梦瑶 . 中国碳化硅行业国际竞争力状况研究[D]. 开封:河南大学, 2013. [21] 王爱民, 白妮, 王晓刚 . 碳化硅冶炼炉逸出气体的组成及理化性质研究[J]. 洁净煤技术, 2009,15(5):62-65.WANG A M, BAI N, WANG X G . Study on gas composition and physicochemical property about escape gas in silicon carbide furnace[J]. Clean Coal Technology, 2009,15(5):62-65. [22] 田玉仙, 王晓刚, 张亚平 , 等. 碳化硅冶炼炉尾气回收安全实验及对策研究[J]. 湖南科技大学学报(自然科学版), 2009,24(2):74-78.TIAN Y X, WANG X G, ZHANG Y P , et al. Research on safe experiment and strategies during tail gas recovery of SiC syjournal furnace[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2009,24(2):74-78. [23] 陈杰, 李阳 . 碳化硅超高温合成炉内气体流动特性研究[J]. 真空科学与技术学报, 2016,36(3):367-371.CHEN J, LI Y . Numerical simulation of gases flow field in ultra-high-temperature SiC synjournal furnace[J]. Chinese Journal of Vacuum Science and Technology, 2016,36(3):367-371.
点击查看大图
计量
- 文章访问数: 530
- HTML全文浏览量: 192
- PDF下载量: 126
- 被引次数: 0