留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳定表流-潜流组合人工湿地系统处理生活污水的研究

符东 付馨烈 王成端 龚燕川 周绿山

符东, 付馨烈, 王成端, 龚燕川, 周绿山. 稳定表流-潜流组合人工湿地系统处理生活污水的研究[J]. 环境工程技术学报, 2020, 10(4): 598-605. doi: 10.12153/j.issn.1674-991X.20190176
引用本文: 符东, 付馨烈, 王成端, 龚燕川, 周绿山. 稳定表流-潜流组合人工湿地系统处理生活污水的研究[J]. 环境工程技术学报, 2020, 10(4): 598-605. doi: 10.12153/j.issn.1674-991X.20190176
FU Dong, FU Xinlie, WANG Chengduan, GONG Yanchuan, ZHOU Lüshan. Study on the treatment of domestic sewage by stable surface flow - subsurface flow combination constructed wetland[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 598-605. doi: 10.12153/j.issn.1674-991X.20190176
Citation: FU Dong, FU Xinlie, WANG Chengduan, GONG Yanchuan, ZHOU Lüshan. Study on the treatment of domestic sewage by stable surface flow - subsurface flow combination constructed wetland[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 598-605. doi: 10.12153/j.issn.1674-991X.20190176

稳定表流-潜流组合人工湿地系统处理生活污水的研究

doi: 10.12153/j.issn.1674-991X.20190176
详细信息
    作者简介:

    符东(1992—),男,硕士研究生,主要研究方向为污水的生态处理,fudongemail@163.com

    通讯作者:

    付馨烈 E-mail: 277094682@qq.com

  • 中图分类号: X524

Study on the treatment of domestic sewage by stable surface flow - subsurface flow combination constructed wetland

More Information
    Corresponding author: FU Xinlie E-mail: 277094682@qq.com
  • 摘要: 设计并建造了由集水池、厌氧池、稳定表流人工湿地(FSSFW)、水平潜流人工湿地(SFCW)组成的稳定表流-潜流组合人工湿地系统,该系统依据地势建造,污水依靠重力流动,经过1个月驯化后,用于生活污水净化的中试研究。在设计水力负荷〔0.108 m3/(m2·d)〕和高水力负荷〔0.180 m3/(m2·d)〕时,分别监测各单元及系统对悬浮物(SS)、化学需氧量(COD)、氨氮(NH3-N)、总氮(TN)和总磷(TP)的去除效果。结果表明:在设计水力负荷下,系统对SS、COD、NH3-N、TN和TP的平均去除率分别为91.6%、81.2%、87.7%、77.3%和86.3%,其中FSSFW对SS和COD的去除率均值高于SFCW和厌氧池,SFCW对NH3-N、TN和TP的去除率均值高于厌氧池和FSSFW,厌氧池对各污染指标去除的贡献最小;在高水力负荷下,系统对SS、COD、NH3-N、TN和TP的去除率分别为91.2%、73.1%、84.2%、69.0%和82.7%,SFCW对SS、COD、NH3-N和TN的去除起主要作用,FSSFW和SFCW对TP去除的贡献无明显差别,而厌氧池对各污染指标去除的贡献最小。该组合人工湿地系统在夏季运行的水力负荷可设为0.108~0.180 m3/(m2·d),冬季应严格按照设计水力负荷运行。在设计水力负荷下,系统出水各项指标均能稳定达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级B标准。

     

  • [1] 夏汉平. 人工湿地处理污水技术的机理与效率[J]. 生态学杂志, 2002,21(4):51-59.

    XIA H P. Mechanisms and efficiencies on wastewater treatment with constructed wetlands:a review[J]. Chinese Journal of Ecology, 2002,21(4):51-59.
    [2] MOLINOS-SENANTE M, GÓMEZ T, CABALLERO R, et al. Assessment of wastewater treatment alternatives for small communities:an analytic network process approach[J]. Science of the Total Environment, 2015,532:676-687.
    doi: 10.1016/j.scitotenv.2015.06.059 pmid: 26119382
    [3] KADLEC R, WALLACE S. Treatment wetlands[M]. Boca Raton: CRC Press, 2009.
    [4] LIN Y, JING S, LEE D, et al. Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates[J]. Bioresource Technology, 2008,99(16):7504-7513.
    doi: 10.1016/j.biortech.2008.02.017 pmid: 18387297
    [5] STOTTMEISTER U, WIEBNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 2003,22(1/2):93-117.
    doi: 10.1016/j.biotechadv.2003.08.010
    [6] 卢少勇, 张彭义, 余刚, 等. 农田排灌水的稳定塘-植物床复合系统处理[J]. 中国环境科学, 2004,24(5):605-609.

    LU S Y, ZHANG P Y, YU G, et al. Stabilization pond-plant bed composite system treatment of farm land irrigation and drainage water[J]. China Environmental Science, 2004,24(5):605-609.
    [7] 白军红, 欧阳华, 邓伟, 等. 湿地氮素传输过程研究进展[J]. 生态学报, 2005,25(2):326-333.

    BAI J H, OUYANG H, DENG W, et al. A review on nitrogen transmission process in natural wetlands[J]. Acta Ecologica Sinica, 2005,25(2):326-333.
    [8] JENSSEN P D, MAEHLUM T, KROGSTAD T. Potential use of constructed wetlands for wastewater treatment in northern environments[J]. Water Science and Technology, 1993,28:149-157.
    [9] 尹炜, 李培军, 尹澄清, 等. 潜流人工湿地的局限性与运行问题[J]. 中国给水排水, 2004,20(11):36-38.

    YIN W, LI P J, YIN C Q, et al. Application limitation and operation of subsurface flow constructed wetland[J]. Chinese Water & Wastewater, 2004,20(11):36-38.
    [10] BODIN H, MIETTO A, EHDE P M, et al. Tracer behaviour and analysis of hydraulics in experimental free water surface wetlands[J]. Ecological Engineering, 2012,49:201-211.
    doi: 10.1016/j.ecoleng.2012.07.009
    [11] GERKE S B L A, XU Y. Nitrogen transformations in a wetland receiving lagoon effluent: sequential model and implications for water reuse[J]. Water Research, 2001,35(16):3857-3866.
    pmid: 12230168
    [12] 张兵之, 吴振斌, 徐光来. 人工湿地的发展概况和面临的问题[J]. 环境科学与技术, 2004,26(增刊2):87-90.

    ZHANG B Z, WU Z B, XU G L. General development and problem for constructed wetlands[J]. Environmental Science & Technology, 2004,26(Suppl 2):87-90.
    [13] YOUSEFI Z, MOHSENI-BANDPEI A. Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus[J]. Ecological Engineering, 2010,36(6):777-782.
    doi: 10.1016/j.ecoleng.2010.02.002
    [14] 吴树彪, 董仁杰. 人工湿地污水处理应用与研究进展[J]. 水处理技术, 2008,34(8):5-9.

    WU S B, DONG R J. The application and research progress of constructed wetland for wastewater treatment[J]. Technology of Water Treatment, 2008,34(8):5-9.
    [15] 张瑞斌, 奚道国, 王乐阳, 等. A/O+铝污泥填料人工湿地组合工艺处理农村生活污水的效果[J]. 环境工程技术学报, 2019,9(2):145-150.

    ZHANG R B, XI D G, WANG L Y, et al. Effect of A/O + aluminum sludge filled constructed wetland combined process on rural domestic sewage[J]. Journal of Environmental Engineering Technology, 2019,9(2):145-150.
    [16] 杨金刚, 王海燕, 周岳溪, 等. 三格厌氧池-垂直流人工湿地处理农村灰水[J]. 环境工程技术学报, 2013,3(2):85-91.
    doi: 10.3969/j.issn.1674-991X.2013.02.015

    YANG J G, WANG H Y, ZHOU Y X, et al. Study of combined three-chamber anaerobic reactor and vertical subsurface flow constructed wetland process for rural grey wastewater treatment[J]. Journal of Environmental Engineering Technology, 2013,3(2):85-91. doi: 10.3969/j.issn.1674-991X.2013.02.015
    [17] 胡杰军, 董婧, 沈志强, 等. 生物沸石人工湿地强化硝化处理污水处理厂二级出水研究[J]. 环境工程技术学报, 2018,8(3):274-281.

    HU J J, DONG J, SHEN Z Q, et al. Nitrification performance secondary effluent from MWTP using bio-zeolite constructed wetland[J]. Journal of Environmental Engineering Technology, 2018,8(3):274-281.
    [18] 葛媛, 郑于聪, 王怡雯, 等. 复合人工湿地在水处理中的应用进展[J]. 环境科学与技术, 2018,41(1):99-108.
    doi: 10.1021/es0614518 pmid: 17265933

    GE Y, ZHENG Y C, WANG Y W, et al. Research progresses in wastewater treatment by hybrid constructed wetlands[J]. Environmental Science & Technology, 2018,41(1):99-108. doi: 10.1021/es0614518 pmid: 17265933
    [19] 刘婧, 邢奕, 金相灿, 等. 复合垂直流湿地去除模拟河水中氮磷的研究[J]. 环境工程技术学报, 2012,2(1):29-35.
    doi: 10.3969/j.issn.1674-991X.2012.01.006

    LIU J, XING Y, JIN X C, et al. Study of nitrogen and phosphorus removal from simulated river water by integrated vertical flow wetland[J]. Journal of Environmental Engineering Technology, 2012,2(1):29-35. doi: 10.3969/j.issn.1674-991X.2012.01.006
    [20] 夏艳阳, 崔理华. 复合垂直流-水平流人工湿地系统除氮效果的影响因素[J]. 环境工程技术学报, 2017,7(2):175-180.

    XIA Y Y, CUI L H. Influential factors of nitrogen removal efficiency by the integrated vertical flow and horizontal flow constructed wetland[J]. Journal of Environmental Engineering Technology, 2017,7(2):175-180.
    [21] 王成端. 低成本污水处理技术及工程实例[M]. 北京: 化学工业出版社, 2008.
    [22] 傅海霞, 王成端, 邓磊, 等. 折流式与推流式稳定表流湿地对比试验研究[J]. 水处理技术, 2011,37(2):69-72.

    FU H X, WANG C D, DENG L, et al. Comparative study of the folds and the pushing stable surface flow wetland[J]. Technology of Water Treatment, 2011,37(2):69-72.
    [23] 黄勇, 王成端, 廖义, 等. 四川望佳人工湿地系统生活污水净化效果[J]. 环境工程学报, 2015,9(2):773-780.

    HUANG Y, WANG C D, LIAO Y, et al. Treatment efficiency of domestic wastewater at Sichuan Wangjia constructed wetland system[J]. Chinese Journal of Environmental Engineering, 2015,9(2):773-780.
    [24] 中国市政工程西南设计研究院. 给水排水设计手册[M]. 2版.北京: 中国建设工业出版社, 2002.
    [25] 环境保护部. 人工湿地污水处理工程技术规范:HJ 2005—2010[S]. 北京:中国环境科学出版社, 2011.
    [26] 魏复盛. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002: 252-354.
    [27] 王亚宜, 黎力, 马骁, 等. 厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J]. 环境科学学报, 2014,34(6):1362-1374.

    WANG Y Y, LI L, MA X, et al. Bio-characteristics of anammox bacteria and CANON anammox process[J]. Acta Scientiae Circumstantiae, 2014,34(6):1362-1374.
    [28] 王宁宁, 赵阳国, 孙文丽, 等. 溶解氧含量对人工湿地去除污染物效果的影响[J]. 中国海洋大学学报, 2018,48(6):24-30.

    WANG N N, ZHAO Y G, SUN W L, et al. Effect of dissolved oxygen on the removal of pollutants in artificial wetland[J]. Periodical of Ocean University of China, 2018,48(6):24-30.
    [29] 郑育毅, 林志龙, 李妍, 等. 自来水厂污泥基陶粒作为湿地填料处理生活污水[J]. 中国给水排水, 2016,32(13):112-115.

    ZHENG Y Y, LIN Z L, LI Y, et al. Ceramsite from waterworks sludge as media in constructed wetlands for treatment of municipal sewage[J]. China Water & Wastewater, 2016,32(13):112-115.
    [30] 彭江燕. 不同水生植物影响污水处理效果的主要参数比较[J]. 云南环境科学, 1998,17(2):47-51.

    PENG J Y. Comparison of major parameters of the influence of various aqua-plants on waste water treatment[J]. Yunnan Environmental Science, 1998,17(2):47-51.
    [31] ZHU T, JENSSEN P D, MACHLUM T, et al. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA):potential filter media in treatment wetlands[J]. Water Science and Technology, 1997,35(5):103-108.
    [32] CUI L J, LI W, ZHOU J, et al. Influence of substrate depth and particle size on phosphorus removal in a surface flow constructed wetland[J]. Water Science and Technology, 2017,75(10):2291-2298.
    pmid: 28541936
    [33] WANG J, ZHANG L Y, LU S Y, et al. Contaminant removal from low-concentration polluted river water by bio-rack wetlands[J]. Journal of Environmental Sciences, 2012,24(6):1006-1013.
    doi: 10.1016/S1001-0742(11)60952-2
    [34] 陈文音, 陈章和, 何其凡, 等. 两种不同根系类型湿地植物的根系生长[J]. 生态学报, 2007,27(2):450-458.
    doi: 10.1016/S1872-2032(07)60017-1

    CHEN W Y, CHEN Z H, HE Q F, et al. Root growth of wetland plants with different two types[J]. Acta Ecologica Sinica, 2007,27(2):450-458. doi: 10.1016/S1872-2032(07)60017-1
    [35] 杨苛. 人工湿地植物的筛选及试验研究[D]. 南宁:广西大学, 2007.
    [36] 梁雪, 贺峰, 徐栋, 等. 人工湿地植物的功能与选择[J]. 水生态学杂志, 2012,33(1):131-138.

    LIANG X, HE F, XU D, et al. Plant function and selection for constructed wetlands[J]. Journal of Hydroecology, 2012,33(1):131-138.
  • 加载中
计量
  • 文章访问数:  458
  • HTML全文浏览量:  150
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-21
  • 刊出日期:  2020-07-20

目录

    /

    返回文章
    返回